Emily E Weinert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4783011/publications.pdf

Version: 2024-02-01

516710 454955 1,040 33 16 30 citations g-index h-index papers 33 33 33 1244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular Effects of $2\hat{a}\in^2$, $3\hat{a}\in^2$ -Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. Journal of Bacteriology, 2022, 204, JB0020821.	2.2	11
2	Elucidating the roles of $2\hat{a}\in 2$, $3\hat{a}\in 2\hat{a}\in 2$ cyclic nucleotide monophosphates in bacterial signaling and stress response. FASEB Journal, 2021, 35, .	0.5	0
3	Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
4	Rescaling Biology: Increasing Integration Across Biological Scales and Subdisciplines to Enhance Understanding and Prediction. Integrative and Comparative Biology, 2021, , .	2.0	2
5	Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein. Biochemistry, 2021, 60, 3801-3812.	2.5	4
6	RNase I Modulates <i>Escherichia coli</i> Motility, Metabolism, and Resistance. ACS Chemical Biology, 2020, 15, 1996-2004.	3.4	10
7	Ï€-Helix controls activity of oxygen-sensing diguanylate cyclases. Bioscience Reports, 2020, 40, .	2.4	2
8	2′,3′-Cyclic Mononucleotide Metabolism and Possible Roles in Bacterial Physiology. , 2020, , 627-637.		0
9	RNase I regulates <i>Escherichia coli</i> 2′,3′-cyclic nucleotide monophosphate levels and biofilm formation. Biochemical Journal, 2018, 475, 1491-1506.	3.7	31
10	Exploring the Links between Nucleotide Signaling and Quorum Sensing Pathways in Regulating Bacterial Virulence. ACS Infectious Diseases, 2018, 4, 1645-1655.	3.8	15
11	Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors. Inorganic Chemistry, 2018, 57, 14386-14395.	4.0	17
12	Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen <i>Pectobacterium carotovorum</i> . ACS Chemical Biology, 2017, 12, 2070-2077.	3.4	14
13	Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Frontiers in Microbiology, 2017, 08, 496.	3.5	34
14	Mechanism and Role of Globin-Coupled Sensor Signalling. Advances in Microbial Physiology, 2017, 71, 133-169.	2.4	26
15	Purifying Properly Folded Cysteine-rich, Zinc Finger Containing Recombinant Proteins for Structural Drug Targeting Studies: the CH1 Domain of p300 as a Case Example. Bio-protocol, 2017, 7, .	0.4	2
16	Oxygen and Bis(3′,5′)-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry, 2016, 55, 6642-6651.	2.5	18
17	Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors. Journal of Inorganic Biochemistry, 2016, 164, 70-76.	3.5	12
18	An O2-sensing stressosome from a Gram-negative bacterium. Nature Communications, 2016, 7, 12381.	12.8	25

#	Article	IF	CITATIONS
19	A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP. Biomolecules, 2014, 4, 1070-1092.	4.0	20
20	Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Molecular BioSystems, 2014, 10, 2823-2826.	2.9	34
21	Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity. Journal of Inorganic Biochemistry, 2013, 127, 7-12.	3.5	14
22	Gating NO Release from Nitric Oxide Synthase. Journal of the American Chemical Society, 2012, 134, 27-30.	13.7	19
23	Controlling Conformational Flexibility of an O ₂ -Binding H-NOX Domain. Biochemistry, 2011, 50, 6832-6840.	2.5	17
24	Trapping a Labile Adduct Formed between anortho-Quinone Methide and 2′-Deoxycytidine. Organic Letters, 2011, 13, 1186-1189.	4.6	14
25	69 Heme Proteins as Gas Sensors. Handbook of Porphyrin Science, 2011, , 123-157.	0.8	0
26	Determinants of the Heme–CO Vibrational Modes in the H-NOX Family. Biochemistry, 2011, 50, 6519-6530.	2.5	10
27	Determinants of Ligand Affinity and Heme Reactivity in Hâ€NOX Domains. Angewandte Chemie - International Edition, 2010, 49, 720-723.	13.8	33
28	Substituents on Quinone Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts. Journal of the American Chemical Society, 2006, 128, 11940-11947.	13.7	199
29	Time-Dependent Evolution of Adducts Formed between Deoxynucleosides and a Model Quinone Methide. Chemical Research in Toxicology, 2005, 18, 1364-1370.	3.3	60
30	A Structural Basis for Constitutive Activity in the Human CAR/RXRα Heterodimer. Molecular Cell, 2004, 16, 919-928.	9.7	219
31	Comparison of the Structural and Physical Properties of Human Hair Eumelanin Following Enzymatic or Acid/Base Extraction. Pigment Cell & Melanoma Research, 2003, 16, 355-365.	3.6	112
32	Establishing structure-function relationships for eumelanin. Biopolymers, 2002, 67, 302-305.	2.4	34
33	Frequencies and relative levels of clustered damages in DNA exposed to gamma rays in radioquenching vs. nonradioquenching conditions. Environmental and Molecular Mutagenesis, 2001, 38, 159-165.	2.2	21