
## **Emily E Weinert**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4783011/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Structural Basis for Constitutive Activity in the Human CAR/RXRα Heterodimer. Molecular Cell, 2004,<br>16, 919-928.                                                                                         | 9.7  | 219       |
| 2  | Substituents on Quinone Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts. Journal of the American Chemical Society, 2006, 128, 11940-11947.                                   | 13.7 | 199       |
| 3  | Comparison of the Structural and Physical Properties of Human Hair Eumelanin Following Enzymatic or Acid/Base Extraction. Pigment Cell & Melanoma Research, 2003, 16, 355-365.                                | 3.6  | 112       |
| 4  | Time-Dependent Evolution of Adducts Formed between Deoxynucleosides and a Model Quinone Methide. Chemical Research in Toxicology, 2005, 18, 1364-1370.                                                        | 3.3  | 60        |
| 5  | Establishing structure-function relationships for eumelanin. Biopolymers, 2002, 67, 302-305.                                                                                                                  | 2.4  | 34        |
| 6  | Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. Molecular BioSystems, 2014, 10, 2823-2826.                                                           | 2.9  | 34        |
| 7  | Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Frontiers in Microbiology, 2017, 08, 496.                                       | 3.5  | 34        |
| 8  | Determinants of Ligand Affinity and Heme Reactivity in Hâ€NOX Domains. Angewandte Chemie -<br>International Edition, 2010, 49, 720-723.                                                                       | 13.8 | 33        |
| 9  | RNase I regulates <i>Escherichia coli</i> 2′,3′-cyclic nucleotide monophosphate levels and biofilm<br>formation. Biochemical Journal, 2018, 475, 1491-1506.                                                   | 3.7  | 31        |
| 10 | Mechanism and Role of Globin-Coupled Sensor Signalling. Advances in Microbial Physiology, 2017, 71, 133-169.                                                                                                  | 2.4  | 26        |
| 11 | An O2-sensing stressosome from a Gram-negative bacterium. Nature Communications, 2016, 7, 12381.                                                                                                              | 12.8 | 25        |
| 12 | Frequencies and relative levels of clustered damages in DNA exposed to gamma rays in radioquenching vs. nonradioquenching conditions. Environmental and Molecular Mutagenesis, 2001, 38, 159-165.             | 2.2  | 21        |
| 13 | A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian<br>Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP. Biomolecules, 2014, 4, 1070-1092.  | 4.0  | 20        |
| 14 | Gating NO Release from Nitric Oxide Synthase. Journal of the American Chemical Society, 2012, 134, 27-30.                                                                                                     | 13.7 | 19        |
| 15 | Oxygen and Bis(3′,5′)-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State<br>Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry, 2016, 55, 6642-6651. | 2.5  | 18        |
| 16 | Controlling Conformational Flexibility of an O <sub>2</sub> -Binding H-NOX Domain. Biochemistry, 2011, 50, 6832-6840.                                                                                         | 2.5  | 17        |
| 17 | Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors.<br>Inorganic Chemistry, 2018, 57, 14386-14395.                                                                   | 4.0  | 17        |
| 18 | Exploring the Links between Nucleotide Signaling and Quorum Sensing Pathways in Regulating<br>Bacterial Virulence. ACS Infectious Diseases, 2018, 4, 1645-1655.                                               | 3.8  | 15        |

EMILY E WEINERT

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Trapping a Labile Adduct Formed between anortho-Quinone Methide and 2′-Deoxycytidine. Organic<br>Letters, 2011, 13, 1186-1189.                                                                                 | 4.6 | 14        |
| 20 | Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity. Journal of Inorganic<br>Biochemistry, 2013, 127, 7-12.                                                                              | 3.5 | 14        |
| 21 | Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant<br>Pathogen <i>Pectobacterium carotovorum</i> . ACS Chemical Biology, 2017, 12, 2070-2077.                      | 3.4 | 14        |
| 22 | Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors. Journal of Inorganic Biochemistry, 2016, 164, 70-76.                                                | 3.5 | 12        |
| 23 | Differential ligand-selective control of opposing enzymatic activities within a bifunctional c-di-GMP<br>enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 11        |
| 24 | Cellular Effects of 2′,3′-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. Journal of<br>Bacteriology, 2022, 204, JB0020821.                                                                        | 2.2 | 11        |
| 25 | Determinants of the Heme–CO Vibrational Modes in the H-NOX Family. Biochemistry, 2011, 50, 6519-6530.                                                                                                          | 2.5 | 10        |
| 26 | RNase I Modulates <i>Escherichia coli</i> Motility, Metabolism, and Resistance. ACS Chemical Biology, 2020, 15, 1996-2004.                                                                                     | 3.4 | 10        |
| 27 | Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor<br>Protein. Biochemistry, 2021, 60, 3801-3812.                                                                       | 2.5 | 4         |
| 28 | Purifying Properly Folded Cysteine-rich, Zinc Finger Containing Recombinant Proteins for Structural<br>Drug Targeting Studies: the CH1 Domain of p300 as a Case Example. Bio-protocol, 2017, 7, .              | 0.4 | 2         |
| 29 | Rescaling Biology: Increasing Integration Across Biological Scales and Subdisciplines to Enhance<br>Understanding and Prediction. Integrative and Comparative Biology, 2021, , .                               | 2.0 | 2         |
| 30 | Ï€-Helix controls activity of oxygen-sensing diguanylate cyclases. Bioscience Reports, 2020, 40, .                                                                                                             | 2.4 | 2         |
| 31 | 69 Heme Proteins as Gas Sensors. Handbook of Porphyrin Science, 2011, , 123-157.                                                                                                                               | 0.8 | Ο         |
| 32 | Elucidating the roles of 2′, 3′ yclic nucleotide monophosphates in bacterial signaling and stress<br>response. FASEB Journal, 2021, 35, .                                                                      | 0.5 | 0         |
| 33 | 2′,3′-Cyclic Mononucleotide Metabolism and Possible Roles in Bacterial Physiology. , 2020, , 627-637.                                                                                                          |     | О         |