Jian Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4783/publications.pdf

Version: 2024-02-01

		279487	189595
70	2,696	23	50
papers	citations	h-index	g-index
71	71	71	3885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interrupted intramolecular donor-acceptor interaction compensated by strong through-space electronic coupling for highly efficient near-infrared TADF with emission over 800Ânm. Chemical Engineering Journal, 2022, 430, 132744.	6.6	23
2	Positive isotope effect in thermally activated delayed fluorescence emitters based on deuterium-substituted donor units. Chemical Engineering Journal, 2022, 430, 132822.	6.6	21
3	An extended π-backbone for highly efficient near-infrared thermally activated delayed fluorescence with enhanced horizontal molecular orientation. Materials Horizons, 2022, 9, 772-779.	6.4	26
4	Highly efficient thermally activated delayed fluorescence emitters with suppressed energy loss and a fast reverse intersystem crossing process. Journal of Materials Chemistry C, 2022, 10, 3685-3690.	2.7	3
5	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie, 2022, 134, .	1.6	9
6	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
7	Novel Deep Red Thermally Activated Delayed Fluorescence Molecule with Aggregation-Induced Emission Enhancement: Theoretical Design and Experimental Validation. Journal of Physical Chemistry Letters, 2022, 13, 4711-4720.	2.1	16
8	A universal thermally activated delayed fluorescent host with short triplet lifetime for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 7706-7712.	2.7	11
9	Positive impact of chromophore flexibility on the efficiency of red thermally activated delayed fluorescence materials. Materials Horizons, 2021, 8, 1297-1303.	6.4	41
10	Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning: Theoretical Molecular Design and Experimental Verification. Journal of Physical Chemistry Letters, 2021, 12, 1893-1903.	2.1	48
11	Effective Low-Temperature Methanol Aqueous Phase Reforming with Metal-Free Carbon Dots/C ₃ N ₄ Composites. ACS Applied Materials & Interfaces, 2021, 13, 24702-24709.	4.0	16
12	Onâ€Surface Synthesis of Giant Conjugated Macrocycles. Angewandte Chemie - International Edition, 2021, 60, 13896-13899.	7.2	14
13	Onâ€Surface Synthesis of Giant Conjugated Macrocycles. Angewandte Chemie, 2021, 133, 14015-14018.	1.6	O
14	Fused-ring acceptors based on quinoxaline unit for highly efficient single-junction organic solar cells with low charge recombination. Organic Electronics, 2021, 98, 106282.	1.4	4
15	Highly efficient deep-red TADF organic light-emitting diodes via increasing the acceptor strength of fused polycyclic aromatics. Chemical Engineering Journal, 2021, 424, 130470.	6.6	41
16	A series of novel host materials based on the 10,11-dihydro- $5 < i > H < /i > -dibenzo[< i > b < /i > , < i > f < /i >]azepine unit for highly efficient green and red organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2969-2976.$	2.7	4
17	Spiro Compounds for Organic Light-Emitting Diodes. Accounts of Materials Research, 2021, 2, 1261-1271.	5.9	64
18	Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation. Langmuir, 2020, 36, 6930-6937.	1.6	51

#	Article	lF	CITATIONS
19	Dual Functionalization of Electron Transport Layer <i>via</i> Tailoring Molecular Structure for High-Performance Perovskite Light-Emitting Diodes. ACS Applied Materials & Emp; Interfaces, 2020, 12, 37346-37353.	4.0	17
20	On-Surface Cascade Reaction Based on Successive Debromination via Metal–Organic Coordination Template. Langmuir, 2020, 36, 6286-6291.	1.6	10
21	Efficient red phosphorescent Ir(<scp>iii</scp>) complexes based on rigid ligands with high external quantum efficiency and low efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 6168-6175.	2.7	10
22	High-performance sky-blue phosphorescent organic light-emitting diodes employing wide-bandgap bipolar host materials with thermally activated delayed fluorescence characteristics. Organic Electronics, 2020, 81, 105660.	1.4	10
23	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
24	15.9% organic tandem solar cell with extended near-infrared absorption. Applied Physics Letters, 2020, 116 , .	1.5	23
25	Fourâ€Coordinate Organoboron Platforms for Efficient Red Phosphorescent Organic Lightâ€Emitting Diodes. ChemPlusChem, 2019, 84, 1587-1595.	1.3	3
26	Highâ€Efficiency Red Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials, 2019, 31, e1902368.	11.1	238
27	9,9′â€Bicarbazole: New Molecular Skeleton for Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 4501-4508.	1.7	36
28	In Situ Construction of One-Dimensional Component-Interchange Organic Core/Shell Microrods for Multicolor Continuous-Variable Optical Waveguide. ACS Applied Materials & Enterfaces, 2019, 11, 5298-5305.	4.0	32
29	Diazaspirocycles: novel platforms for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1370-1378.	2.7	13
30	High-efficiency exciplex-based white organic light-emitting diodes with a new tripodal material as a co-host. Journal of Materials Chemistry C, 2019, 7, 7267-7272.	2.7	14
31	Water-soluble and highly emissive near-infrared nano-probes by co-assembly of ionic amphiphiles: towards application in cell imaging. New Journal of Chemistry, 2019, 43, 8059-8066.	1.4	3
32	A series of fluorenone-carbazole based regioisomers as bipolar host materials for efficient organic light emitting diodes. Tetrahedron, 2019, 75, 2664-2669.	1.0	8
33	Dispirocycles: Platforms for the Construction of Highâ€Performance Host Materials for Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 6788-6796.	1.7	8
34	Highly efficient red thermally activated delayed fluorescence materials based on a cyano-containing planar acceptor. Journal of Materials Chemistry C, 2019, 7, 15301-15307.	2.7	31
35	Phenanthrenone-based hole transport material for efficient dopant-free perovskite solar cells. Organic Electronics, 2019, 65, 135-140.	1.4	18
36	Selective on-surface covalent coupling based on metal-organic coordination template. Nature Communications, 2019, 10, 70.	5.8	55

#	Article	IF	CITATIONS
37	Modulation of p-type units in tripodal bipolar hosts towards highly efficient red phosphorescent OLEDs. Dyes and Pigments, 2019, 162, 632-639.	2.0	11
38	Blue thermally activated delayed fluorescence materials based on bi/tri-carbazole derivatives. Organic Electronics, 2018, 58, 238-244.	1.4	4
39	Novel o-D-ï∈-A arylamine/arylphosphine oxide hybrid hosts for efficient phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 56, 186-191.	1.4	9
40	Spirobi[dibenzo[<i>b</i> , <i>e</i>][1,4]azasiline]: a novel platform for host materials in highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1023-1030.	2.7	18
41	Naphthalene-based host materials for highly efficient red phosphorescent OLEDs at low doping ratios. Organic Electronics, 2018, 54, 140-147.	1.4	16
42	Dispiro and Propellane: Novel Molecular Platforms for Highly Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1925-1932.	4.0	23
43	Novel carbazole derivatives designed by an ortho-linkage strategy for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4300-4307.	2.7	18
44	New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 52, 138-145.	1.4	19
45	A Novel Linking Strategy of Using 9,10â€Dihydroacridine to Construct Efficient Host Materials for Red Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2018, 24, 11755-11762.	1.7	8
46	A series of spirofluorene-based host materials for efficient phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 61, 70-77.	1.4	13
47	Efficient OLEDs with saturated yellow and red emission based on rigid tetradentate Pt(II) complexes. Organic Electronics, 2018, 62, 542-547.	1.4	16
48	Smart OLED Lighting on Electrochromic Glass. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800102.	0.8	5
49	9-Silafluorene and 9-germafluorene: novel platforms for highly efficient red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 8144-8151.	2.7	21
50	Phosphorescent platinum(<scp>ii</scp>) complexes based on spiro linkage-containing ligands. Journal of Materials Chemistry C, 2017, 5, 1944-1951.	2.7	13
51	Dibenzo[g,p]chrysene: A new platform for highly efficient red phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 146, 234-239.	2.0	22
52	A two-dimension-conjugated small molecule for efficient ternary organic solar cells. Organic Electronics, 2017, 48, 179-187.	1.4	15
53	Highly phosphorescent cyclometalated platinum(<scp>ii</scp>) complexes based on 2-phenylbenzimidazole-containing ligands. Journal of Materials Chemistry C, 2017, 5, 6202-6209.	2.7	32
54	Orthogonally substituted aryl derivatives as bipolar hosts for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2017, 46, 105-114.	1.4	15

#	Article	IF	CITATIONS
55	High-yield colloidal synthesis of monometallic Au nanorod–Au nanoparticle dimers and their application in SERS. RSC Advances, 2017, 7, 12322-12328.	1.7	7
56	Efficient PbS quantum dot solar cells employing a conventional structure. Journal of Materials Chemistry A, 2017, 5, 23960-23966.	5.2	104
57	Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. CheM, 2017, 3, 652-664.	5.8	406
58	Efficient sky-blue emitting Pt(<scp>ii</scp>) complexes based on imidazo[1,2-f]phenanthridine-containing tetradentate ligands. Journal of Materials Chemistry C, 2017, 5, 9496-9503.	2.7	20
59	Microwave-assisted synthesis of high-quality "all-inorganic―CsPbX ₃ (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10947-10954.	2.7	180
60	Highly luminescent platinum(II) complexes based on pyrazolo[1,5-f]phenanthridine-containing ligands. Organic Electronics, 2017, 50, 473-479.	1.4	24
61	Donor-acceptor polymers based on 5,6-difluoro-benzo[1,2,5]thiadiazole for high performance solar cells. Organic Electronics, 2016, 33, 187-193.	1.4	5
62	Highly phosphorescent platinum(II) complexes based on rigid unsymmetric tetradentate ligands. Organic Electronics, 2016, 32, 120-125.	1.4	28
63	Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Research, 2016, 9, 1497-1506.	5.8	112
64	Surface-Controlled Mono/Diselective <i>ortho</i> C–H Bond Activation. Journal of the American Chemical Society, 2016, 138, 2809-2814.	6.6	120
65	Strongly phosphorescent platinum(<scp>ii</scp>) complexes supported by tetradentate benzazole-containing ligands. Journal of Materials Chemistry C, 2015, 3, 8212-8218.	2.7	32
66	Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy, 2015, 15, 654-661.	8.2	63
67	One-step structure-directing approach to Ce3+-doped CaS luminescent micro-nanocrystals. CrystEngComm, 2015, 17, 8676-8682.	1.3	3
68	Highâ∈Holeâ∈Mobility Fieldâ∈Effect Transistors Based on <i>Coâ€</i> Benzobisthiadiazoleâ€Quaterthiophene. Advanced Materials, 2012, 24, 6164-6168.	11.1	105
69	Synthesis and Characterization of 7,8,15,16-Tetraazaterrylene. Organic Letters, 2012, 14, 1024-1026.	2.4	41
70	Highâ€Performance Ambipolar Transistors and Inverters from an Ultralow Bandgap Polymer. Advanced Materials, 2012, 24, 2186-2190.	11.1	159