Changhui Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4782839/publications.pdf Version: 2024-02-01

Сналснии Уб

#	Article	IF	CITATIONS
1	Thermal Response of Transparent Silver Nanowire/PEDOT:PSS Film Heaters. Small, 2014, 10, 4951-4960.	5.2	232
2	Zinc Oxide Nanostructures:Â Morphology Derivation and Evolution. Journal of Physical Chemistry B, 2005, 109, 19758-19765.	1.2	206
3	Rational Growth of Bi2S3Nanotubes from Quasi-two-dimensional Precursors. Journal of the American Chemical Society, 2002, 124, 15180-15181.	6.6	190
4	3D Interdigital Au/MnO ₂ /Au Stacked Hybrid Electrodes for Onâ€Chip Microsupercapacitors. Small, 2016, 12, 3059-3069.	5.2	119
5	Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method. ACS Applied Materials & Interfaces, 2016, 8, 9865-9871.	4.0	95
6	A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chemical Communications, 2014, 50, 14877-14880.	2.2	89
7	One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure and Applied Chemistry, 2010, 82, 2185-2198.	0.9	88
8	Synthesis of Rare Earth Ions-Doped ZnO Nanostructures with Efficient Hostâ^'Guest Energy Transfer. Journal of Physical Chemistry C, 2009, 113, 16439-16444.	1.5	76
9	Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics. Journal of Materials Chemistry C, 2017, 5, 2240-2246.	2.7	74
10	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. Journal of Materials Chemistry A, 2014, 2, 20916-20922.	5.2	72
11	Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes. Journal of Materials Chemistry, 2012, 22, 4890.	6.7	66
12	Coaxialâ€ S tructured Weavable and Wearable Electroluminescent Fibers. Advanced Electronic Materials, 2017, 3, 1700401.	2.6	63
13	Highly Flexible and Bright Electroluminescent Devices Based on Ag Nanowire Electrodes and Topâ€Emission Structure. Advanced Electronic Materials, 2017, 3, 1600535.	2.6	54
14	Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance. Nano-Micro Letters, 2017, 9, 19.	14.4	50
15	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	7.2	49
16	Synthesis of very thin Ag nanowires with fewer particles by suppressing secondary seeding. CrystEngComm, 2017, 19, 148-153.	1.3	45
17	Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. Journal of Materials Chemistry A, 2015, 3, 617-623.	5.2	44
18	Study on hole-transport-material-free planar TiO ₂ /CH ₃ NH ₃ PbI ₃ heterojunction solar cells: the simplest configuration of a working perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 14902-14909.	5.2	40

Changhui Ye

#	Article	IF	CITATIONS
19	Reversible blue light emission from self-assembled silica nanocords. Applied Physics Letters, 2005, 87, 033106.	1.5	36
20	Synthesis, characterization, and surface-enhanced Raman scattering of near infrared absorbing Cu3SbS3 nanocrystals. CrystEngComm, 2013, 15, 10431.	1.3	35
21	High-purity very thin silver nanowires obtained by Ostwald ripening-driven coarsening and sedimentation of nanoparticles. CrystEngComm, 2018, 20, 2834-2840.	1.3	34
22	The synthesis of monodispersed AgBiS2 quantum dots with a giant dielectric constant. CrystEngComm, 2013, 15, 7644.	1.3	30
23	Water-Based Purification of Ultrathin Silver Nanowires toward Transparent Conductive Films with a Transmittance Higher than 99%. ACS Applied Materials & Interfaces, 2019, 11, 22648-22654.	4.0	30
24	Interface engineering: Boosting the energy conversion efficiencies for nanostructured solar cells. Pure and Applied Chemistry, 2012, 84, 2653-2675.	0.9	29
25	Flexible Si/PEDOT:PSS hybrid solar cells. Nano Research, 2015, 8, 3141-3149.	5.8	27
26	Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films. RSC Advances, 2017, 7, 1936-1942.	1.7	26
27	Micropore-Boosted Layered Double Hydroxide Catalysts: EIS Analysis in Structure and Activity for Effective Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2019, 11, 30887-30893.	4.0	26
28	Strongly Adhesive Silver Nanowire Ink Makes Delamination-Free Transparent Conductive Films Possible. ACS Applied Nano Materials, 2019, 2, 6707-6714.	2.4	23
29	Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays. Cell Reports Physical Science, 2020, 1, 100213.	2.8	22
30	Tackling the Stability Issues of Silver Nanowire Transparent Conductive Films through FeCl3 Dilute Solution Treatment. Nanomaterials, 2019, 9, 533.	1.9	20
31	Electrothermal Actuators with Ultrafast Response Speed and Large Deformation. Advanced Intelligent Systems, 2020, 2, 2000036.	3.3	20
32	<i>In situ</i> metal doping during modified anodization synthesis of Nb ₂ O ₅ with enhanced photoelectrochemical water splitting. AICHE Journal, 2016, 62, 352-358.	1.8	16
33	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	1.6	16
34	Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible Electronic Devices. Scientific Reports, 2014, 4, 3940.	1.6	15
35	On the stability of CdSe quantum dot-sensitized solar cells. RSC Advances, 2014, 4, 15702.	1.7	14
36	Fabrication of Orientation-Tunable Si Nanowires on Silicon Pyramids with Omnidirectional Light Absorption. Langmuir, 2017, 33, 3569-3575.	1.6	14

Changhui Ye

#	Article	IF	CITATIONS
37	Sandwich-Structured Silver Nanowire Transparent Conductive Films with 3H Hardness and Robust Flexibility for Potential Applications in Curved Touch Screens. Nanomaterials, 2019, 9, 557.	1.9	11
38	A highly sensitive strain sensor with a sandwich structure composed of two silver nanoparticles layers and one silver nanowires layer for human motion detection. Nanotechnology, 2021, 32, 375504.	1.3	8
39	Enhanced stability of silver nanowire transparent conductive films against ultraviolet light illumination. Nanotechnology, 2021, 32, 055603.	1.3	5
40	Unravelling the detrimental effect of water in the polyol synthesis of ultrathin silver nanowires. CrystEngComm, 2019, 21, 5243-5248.	1.3	3
41	Highly accurate particulate matter detection assisted by an air heater based on a silver nanowire film. Nanotechnology, 2019, 30, 485204.	1.3	3
42	A reusable wet-transfer printing technique for manufacturing of flexible silver nanowire film-based electrodes. Nanotechnology, 2021, 32, 505510.	1.3	3