
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Synthesis of Graphene on an Insulating Substrate and Its Device Application. Vacuum and Surface Science, 2022, 65, 184-189.	0.1	0
2	Origin of Monochromatic Electron Emission From Planar-Type Graphene/ h -BN/ n -Si Devices. Physical Review Applied, 2021, 15, .	3.8	8
3	Fabrication of nano-capillary emitter arrays for ionic liquid electrospray thrusters. Japanese Journal of Applied Physics, 2021, 60, SCCF07.	1.5	2
4	Planar type electron emission device using atomic layered materials and it applications. , 2021, , .		0
5	Microscope equipped with graphene-oxide-semiconductor electron source. , 2021, , .		1
6	>Oxygen Resistance Investigation of Graphene-Oxide-Semiconductor Planar-Type Electron Sources for Low Earth Orbit Applications. , 2021, , .		0
7	Highly Monochromatic Electron Emission from Graphene/Hexagonal Boron Nitride/Si Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 4061-4067.	8.0	24
8	Mechanism of Highly Efficient Electron Emission from a Graphene/Oxide/Semiconductor Structure. ACS Applied Electronic Materials, 2020, 2, 2265-2273.	4.3	18
9	Low-power-consumption, high-current-density, and propellantless cathode using graphene-oxide-semiconductor structure array. Acta Astronautica, 2020, 174, 48-54.	3.2	10
10	Development of High-performance Electron Sources and Its Application. Vacuum and Surface Science, 2020, 63, 7-12.	0.1	0
11	Fabrication of a high-density emitter array for electrospray thrusters using field emitter array process. Japanese Journal of Applied Physics, 2019, 58, SEEG04.	1.5	6
12	High-performance planar-type electron source based on a graphene-oxide-semiconductor structure. Applied Physics Letters, 2019, 114, 213501.	3.3	29
13	Electron emission properties of graphene-oxide-semiconductor planar-type electron emission devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	15
14	Fabrication of Electrospray Thrusters with a High-Density Emitter Array Utilizing Minimal-Fab System. , 2018, , .		1
15	Graphene-oxide-semiconductor planar-type electron emission device and its applications. , 2018, , .		0
16	Evaluation of electron emission properties of graphene-oxide-silicon planar type cold cathode for an electron microscope. , 2018, , .		2
17	Improvement of Electron Emission Efficiency of Graphene-Oxide-Semiconductor Planar-Type Electron Sources for Nanosatellite Neutralizers. , 2018, , .		0
18	Annealing effect on electron emission properties of graphene-oxide-semiconductor planar-type electron emission devices. , 2017, , .		0

#	Article	IF	CITATIONS
19	Process technology for volcano-structured double-gate Spindt-type field emitter arrays. , 2017, , .		0
20	Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals. Japanese Journal of Applied Physics, 2016, 55, 055102.	1.5	0
21	Graphene-oxide-semiconductor planar-type electron emission device. Applied Physics Letters, 2016, 108,	3.3	25
22	Low-temperature growth of graphene using interfacial catalysis of molten gallium and diluted methane chemical vapor deposition. Applied Physics Express, 2015, 8, 095102.	2.4	9
23	Current conduction mechanism of MIS devices using multidimensional minimization system program. Microelectronics Reliability, 2015, 55, 1028-1034.	1.7	4
24	Cysteine-containing oligopeptide \hat{l}^2 -sheets as redispersants for agglomerated metal nanoparticles. Journal of Materials Chemistry A, 2015, 3, 17612-17619.	10.3	8
25	Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition. Applied Physics Letters, 2015, 106, .	3.3	46
26	Nano electron source fabricated by beam-induced deposition and its unique feature. Microelectronic Engineering, 2015, 132, 74-82.	2.4	13
27	Beam-induced graphitic carbon cage transformation from sumanene aggregates. Applied Physics Letters, 2014, 104, 043107.	3.3	4
28	Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization. Applied Physics Letters, 2014, 104, 243101.	3.3	8
29	In-situ visualization of local magnetic fields using low-energy electron beam in scanning electron microscope. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 06FC02.	1.2	2
30	Nanoscale Characterization of TiO ₂ Films Grown by Atomic Layer Deposition on RuO ₂ Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 2486-2492.	8.0	21
31	Synthesis of graphene nanoribbons from amyloid fibrils by solid-phase graphitization using liquid gallium catalyst. Materials Research Society Symposia Proceedings, 2014, 1658, 82.	0.1	2
32	10.1063/1.4863739.1., 2014, , .		0
33	Damage and strain in single-layer graphene induced by very-low-energy electron-beam irradiation. Applied Physics Letters, 2013, 102, .	3.3	28
34	Influence of parasitic capacitances on conductive AFM <i>I-V</i> measurements and approaches for its reduction. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	9
35	TiO ₂ -Based Metal-Insulator-Metal Structures for Future DRAM Storage Capacitors. ECS Transactions, 2013, 50, 79-87.	O.5	12
36	Growth of bridging carbon nanofibers in cracks formed by heat-treating iron oxide thin sheets in acetylene gas. AIP Advances, 2013, 3, 042127.	1.3	3

#	Article	IF	CITATIONS
37	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	14.6	139
38	Three dimensional measurement of nanostructures by single event TOF-RBS with nuclear nano probe. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2233-2236.	1.4	4
39	Current Voltage Characteristics through Grains and Grain Boundaries of High-k Dielectric Thin Films Measured by Tunneling Atomic Force Microscopy. AIP Conference Proceedings, 2011, , .	0.4	17
40	Electron Transport Properties of Pt Nanoarch Fabricated by Electron-Beam-Induced Deposition. Japanese Journal of Applied Physics, 2011, 50, 06GG14.	1.5	1
41	Effect of ultraviolet light irradiation on electron field emission from titanium-oxide nanostructures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 02B110.	1.2	3
42	A highly sensitive evaluation method for the determination of different current conduction mechanisms through dielectric layers. Journal of Applied Physics, 2011, 110, .	2.5	12
43	Electron Transport Properties of Pt Nanoarch Fabricated by Electron-Beam-Induced Deposition. Japanese Journal of Applied Physics, 2011, 50, 06GG14.	1.5	1
44	Study on time resolution of single event TOF-RBS measurement. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2019-2022.	1.4	6
45	Evaluation of emission uniformity of nanocrystalline silicon planar cathodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2C49-C2C52.	1.2	4
46	Electron emission from LiNbO3 crystal excited by ultraviolet laser. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2B27-C2B29.	1.2	10
47	Electron wave interference induced by electrons emitted from Pt field emitter fabricated by focused-ion-beam-induced deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2A9-C2A12.	1.2	6
48	Effects of carbon nanotube diameters of the screen printed cathode on the field emission characteristics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2C41-C2C44.	1.2	8
49	<i>In situ</i> transmission electron microscopy observation of electron-beam-deposited Pt field emitter during field emission and field evaporation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2C13-C2C15.	1.2	3
50	Fabrication and electron field-emission properties of titanium oxide nanowire on glass substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2B24-C2B26.	1.2	7
51	Field enhanced surface treatment of needle-shaped TiO[sub 2] cathode for improvement in field emission. Journal of Vacuum Science & Technology B, 2009, 27, 775.	1.3	10
52	Superposition of fringelike-electron-emission pattern from radical-oxygen-gas exposed Pt field emitter fabricated by electron-beam-induced deposition. Journal of Vacuum Science & Technology B, 2009, 27, 721-724.	1.3	13
53	Effect of aging on field emission lifetime for carbon nanotube cathodes. Journal of Vacuum Science & Technology B, 2009, 27, 761.	1.3	6
54	Transmission-Electron-Microscopy Observation of Pt Pillar Fabricated by Electron-Beam-Induced Deposition. Japanese Journal of Applied Physics, 2009, 48, 06FF12.	1.5	3

#	Article	IF	CITATIONS
55	Emission uniformity of nanocrystalline silicon based metal-oxide-semiconductor cathodes. , 2009, , .		0
56	Improvement of emission efficiency of nanocrystalline silicon planar cathodes. Journal of Vacuum Science & Technology B, 2008, 26, 864-867.	1.3	15
57	Relationship between field-emission characteristics and defects measured by Raman scattering in carbon-nanotube cathodes treated by plasma and laser. Journal of Vacuum Science & Technology B, 2008, 26, 760-763.	1.3	9
58	Improved field-emission characteristics of a multiwalled carbon-nanotube cathode by argon plasma pretreatment and krypton-fluoride laser irradiation. Journal of Vacuum Science & Technology B, 2007, 25, 566.	1.3	4
59	KrF laser surface treatment of carbon nanotube cathodes with and without reactive ion etching. Journal of Vacuum Science & Technology B, 2007, 25, 557.	1.3	17
60	Observation of fringelike electron-emission pattern in field emission from Pt field emitter fabricated by electron-beam-induced deposition. Journal of Vacuum Science & Technology B, 2007, 25, 1310.	1.3	22
61	Improvement of emission efficiency of nanocrystalline silicon planar cathodes. , 2007, , .		0
62	Surface treatment of carbon nanotube cathodes with glass fillers using KrF excimer laser for field-emission displays. Journal of Vacuum Science & Technology B, 2006, 24, 1013.	1.3	9
63	Effect of thermal annealing on emission characteristics of nanoelectron source fabricated using beam-assisted process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 759.	1.6	7
64	Transport Properties of Pt Nanowires Fabricated by Beam-Induced Deposition. Japanese Journal of Applied Physics, 2005, 44, 5683-5686.	1.5	39
65	Observation of electron emission pattern from nanosplit emitter fabricated using beam assisted process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 735.	1.6	5
66	Laser surface treatment of carbon nanotube cathodes for field emission displays with large diagonal size. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 765.	1.6	23
67	Influence of gas atmosphere during laser surface treatment of CNT cathode. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 762.	1.6	6
68	Characteristics of nano electron source fabricated using beam assisted process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1266.	1.6	26
69	Improvement in electron emission from carbon nanotube cathodes after Ar plasma treatment. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1342.	1.6	44
70	Optimization of Pt tip field emitter array fabricated using focused ion and electron beams. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1598.	1.6	11
71	Fabrication of Nano Electron Source Using Beam-Assisted Process. Japanese Journal of Applied Physics, 2003, 42, 4037-4040.	1.5	13

Laser surface treatment of CNT cathodes for large diagonal FEDs. , 0, , .

0

#	Article	IF	CITATIONS
73	Influence of gas atmosphere during laser surface treatment of CNT cathode. , 0, , .		0
74	Effect of thermal annealing on emission characteristics of nano electron source fabricated using beam assisted process. , 0, , .		0
75	Observation of electron emission pattern from nano-split emitter fabricated using beam assisted process. , 0, , .		0