List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4782237/publications.pdf Version: 2024-02-01

MIN ZHENC

#	Article	IF	CITATIONS
1	Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272.	2.8	1,018
2	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	1.6	759
3	On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 2013, 5, 13242-13247.	4.0	700
4	Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO ₃ . ACS Applied Materials & Interfaces, 2014, 6, 19184-19190.	4.0	608
5	Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Advanced Materials, 2014, 26, 3554-3560.	11.1	509
6	Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe ³⁺ . ACS Applied Materials & Interfaces, 2013, 5, 1078-1083.	4.0	488
7	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	7.3	439
8	Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 2018, 6, 707-717.	2.9	413
9	Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications, 2015, 4, e364-e364.	7.7	366
10	Three Colors Emission from S,N Coâ€doped Graphene Quantum Dots for Visible Light H ₂ Production and Bioimaging. Advanced Optical Materials, 2015, 3, 360-367.	3.6	276
11	One-Pot To Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2016, 8, 23533-23541.	4.0	244
12	One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces, 2015, 7, 22181-22187.	4.0	192
13	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. Journal of Physical Chemistry Letters, 2011, 2, 1701-1709.	2.1	125
14	Porphyrinâ€Based Carbon Dots for Photodynamic Therapy of Hepatoma. Advanced Healthcare Materials, 2017, 6, 1600924.	3.9	125
15	Cavity-induced enantioselectivity reversal in a chiral metal–organic framework BrÃ,nsted acid catalyst. Chemical Science, 2012, 3, 2623.	3.7	120
16	Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 2018, 10, 10991-10998.	2.8	101
17	Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots. Chemical Engineering Journal, 2021, 420, 127647.	6.6	101
18	Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2016, 4, 298-304.	3.2	97

#	Article	IF	CITATIONS
19	Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004680.	7.8	95
20	Mitochondria-Localized Fluorescent BODIPY-Platinum Conjugate. ACS Medicinal Chemistry Letters, 2015, 6, 430-433.	1.3	80
21	Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials, 2020, 255, 120110.	5.7	79
22	Separately doped upconversion-C ₆₀ nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chemical Communications, 2013, 49, 3224-3226.	2.2	78
23	Lysosome targeting carbon dots-based fluorescent probe for monitoring pH changes in vitro and in vivo. Chemical Engineering Journal, 2020, 381, 122665.	6.6	77
24	Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sensors and Actuators B: Chemical, 2020, 319, 128265.	4.0	69
25	Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012, 22, 21965.	6.7	66
26	Supramolecular Hybrids of AIEgen with Carbon Dots for Noninvasive Long-Term Bioimaging. Chemistry of Materials, 2016, 28, 8825-8833.	3.2	59
27	Supramolecular hybrids of carbon dots with doxorubicin: synthesis, stability and cellular trafficking. Materials Chemistry Frontiers, 2017, 1, 354-360.	3.2	59
28	Carbon dots with concentration-modulated fluorescence: Aggregation-induced multicolor emission. Journal of Colloid and Interface Science, 2020, 573, 241-249.	5.0	58
29	Synthesis and Identification of Heterocyclic Derivatives of Fullerene C60:  Unexpected Reaction of Anionic C60 with Benzonitrile. Journal of Organic Chemistry, 2008, 73, 3159-3168.	1.7	54
30	Unadulterated BODIPY-dimer nanoparticles with high stability and good biocompatibility for cellular imaging. Nanoscale, 2014, 6, 5662-5665.	2.8	54
31	Electrosynthesis and Characterization of 1,2-Dibenzyl C60: A Revisit. Journal of Organic Chemistry, 2007, 72, 2538-2542.	1.7	53
32	BODIPY@carbon dot nanocomposites for enhanced photodynamic activity. Materials Chemistry Frontiers, 2019, 3, 1747-1753.	3.2	45
33	Fluorine-Doped Carbon Dots with Intrinsic Nucleus-Targeting Ability for Drug and Dye Delivery. Bioconjugate Chemistry, 2020, 31, 646-655.	1.8	45
34	Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds. RSC Advances, 2016, 6, 83501-83504.	1.7	43
35	Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Materials Science and Engineering C, 2018, 85, 1-6.	3.8	39
36	The interaction between conjugated polymer and fullerenes. Journal of Applied Polymer Science, 1998, 70, 599-603.	1.3	38

#	Article	IF	CITATIONS
37	Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery. Journal of Materials Chemistry B, 2016, 4, 5659-5663.	2.9	37
38	Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dyes and Pigments, 2021, 187, 109126.	2.0	37
39	Room temperature phosphorescent carbon dots for latent fingerprints detection and in vivo phosphorescence bioimaging. Sensors and Actuators B: Chemical, 2022, 351, 130976.	4.0	37
40	Chiral Carbon Dots-Enzyme Nanoreactors with Enhanced Catalytic Activity for Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 56456-56464.	4.0	34
41	Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. Journal of Colloid and Interface Science, 2018, 523, 226-233.	5.0	31
42	New light emitting materials: Alternating copolymers with hole transport and emitting chromophores. Journal of Applied Polymer Science, 1999, 74, 3351-3358.	1.3	30
43	A convenient and universal platform for sensing environmental nitro-aromatic explosives based on amphiphilic carbon dots. Environmental Research, 2019, 177, 108621.	3.7	29
44	A carbon dots–based nanoprobe for intracellular Fe3+ detection. Materials Today Chemistry, 2019, 13, 121-127.	1.7	27
45	BODIPY Fluorescent Chemosensor for Cu2+ Detection and Its Applications in Living Cells: Fast Response and High Sensitivity. Journal of Fluorescence, 2014, 24, 841-846.	1.3	26
46	Thiadiazole molecules and poly(ethylene glycol)-block-polylactide self-assembled nanoparticles as effective photothermal agents. Colloids and Surfaces B: Biointerfaces, 2015, 136, 201-206.	2.5	25
47	Dopamine carbon nanodots as effective photothermal agents for cancer therapy. RSC Advances, 2016, 6, 54087-54091.	1.7	24
48	Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. Journal of Colloid and Interface Science, 2018, 514, 584-591.	5.0	22
49	A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications. Journal of Materials Chemistry B, 2019, 7, 3840-3845.	2.9	22
50	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
51	Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging. Journal of Materials Research, 2015, 30, 3386-3393.	1.2	20
52	Near-Infrared absorbing J-Aggregates of boron dipyrromethene for high efficient photothermal therapy. Journal of Colloid and Interface Science, 2021, 599, 476-483.	5.0	20
53	Orientated anatase TiO2 nanocrystal array thin films for self-cleaning coating. Chemical Communications, 2013, 49, 8958.	2.2	19
54	The first synthesis of a water-soluble α-cyclodextrin/C60 supramolecular complex using anionic C60 as a building block. Tetrahedron Letters, 2006, 47, 8571-8574.	0.7	18

#	Article	IF	CITATIONS
55	Carrier-free core–shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. Journal of Colloid and Interface Science, 2019, 535, 84-91.	5.0	17
56	An activatable fluorescent prodrug of paclitaxel and BODIPY. Journal of Materials Chemistry B, 2021, 9, 2308-2313.	2.9	17
57	Fluorescent nanoparticles with ultralow chromophore loading for long-term tumor-targeted imaging. Acta Biomaterialia, 2020, 111, 398-405.	4.1	17
58	Synthesis and characterization of a high-efficiency light-emitting alternating copolymer. Journal of Polymer Science Part A, 1999, 37, 2587-2594.	2.5	16
59	Negative Differential Resistance and Memory Effect in Diodes Based on 1,4-Dibenzyl C60 and Zinc Phthalocyanine Doped Polystyrene Hybrid Material. Inorganic Chemistry, 2007, 46, 341-344.	1.9	16
60	Synthesis of cross-linked polymers via multi-component Passerini reaction and their application as efficient photocatalysts. RSC Advances, 2014, 4, 25114-25117.	1.7	15
61	BODIPY-based carbon dots as fluorescent nanoprobes for sensing and imaging of extreme acidity. Analytical Methods, 2018, 10, 1863-1869.	1.3	14
62	Photoluminescence of poly(1,4-phenylenevinylene) derivatives in solution and film. Polymers for Advanced Technologies, 1999, 10, 476-480.	1.6	13
63	Core Crossâ€Linked Micelleâ€Based Nanoreactors for Efficient Photocatalysis. Chemistry - an Asian Journal, 2013, 8, 2807-2812.	1.7	12
64	Phenylboronic acid modified carbon dots for improved protein delivery. Chemical Engineering Science, 2021, 237, 116586.	1.9	12
65	Hierarchical TiO ₂ spheres decorated with Au nanoparticles for visible light hydrogen production. RSC Advances, 2015, 5, 21237-21241.	1.7	11
66	Carbon dots embedded hydrogel spheres for sensing and removing rifampicin. Dyes and Pigments, 2022, 198, 110023.	2.0	11
67	Why [6,6]- and 1,2-Benzal-3- <i>N</i> -4- <i>O</i> -Cyclic Phenylimidate C ₆₀ Undergo Electrochemically Induced Retro-Addition Reactions while 1,4-Dibenzyl-2,3-Cyclic Phenylimidate C ₆₀ Does Not? Câ ^{-*} H···X (X = N, O) Intramolecular Interactions in Organofullerenes. Journal of Organic Chemistry 2009 74 82-87	1.7	10
68	Direct Evidence of Photoinduced Charge Transfer from Alternating Copolymer to Buckminsterfullerene. Macromolecular Chemistry and Physics, 2001, 202, 1824-1828.	1.1	8
69	Photoinduced Intramolecular Charge Separation at the Repetition Units of Light-Emitting Alternating Copolymers. Macromolecular Chemistry and Physics, 2001, 202, 2287-2292.	1.1	8
70	Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions. Applied Physics Letters, 2004, 84, 2980-2982.	1.5	8
71	Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 2018, 10, 10991-10998.	2.8	7
72	Exploring BODIPY derivatives as photosensitizers for antibacterial photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102901.	1.3	5

#	Article	IF	CITATIONS
73	Photoluminescence: Three Colors Emission from S,N Co-doped Graphene Quantum Dots for Visible Light H2Production and Bioimaging (Advanced Optical Materials 3/2015). Advanced Optical Materials, 2015, 3, 359-359.	3.6	4
74	Controlled synthesis of spindle-shaped terrylenediimide nanoparticles for enhanced tumor accumulation and treatment. Chemical Engineering Journal, 2021, 419, 129552.	6.6	4
75	Polyorganosiloxane-europium (III) host-guest inclusion system and its energy transfer luminescence. Science in China Series B: Chemistry, 1999, 42, 351-356.	0.8	3
76	Light-emitting alternating copolymers and their intramolecular charge transfer state. Polymers for Advanced Technologies, 2003, 14, 303-308.	1.6	3
77	A general carbon dot-based platform for intracellular delivery of proteins. Soft Matter, 2022, 18, 2776-2781.	1.2	2
78	Carbazole-containing light-emitting polymers: Properties of excited states. Science Bulletin, 2003, 48, 637-642.	4.3	1