Olivier Provot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4782170/publications.pdf

Version: 2024-02-01

67 papers 2,452 citations

147801 31 h-index 206112 48 g-index

74 all docs

74 docs citations

times ranked

74

2095 citing authors

#	Article	IF	CITATIONS
1	Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes. Journal of Organic Chemistry, 2022, 87, 1249-1261.	3.2	5
2	Recent Progress on the Mild Deprotection of Dithioketals, Dithioacetals, and Oxathiolanes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
3	Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114573.	5.5	12
4	Cyclic bridged analogs of isoCA-4: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2021, 209, 112873.	5.5	16
5	Recent advances in the synthesis of pyrido[1,2- <i>a</i>]indoles. Organic and Biomolecular Chemistry, 2021, 19, 3509-3526.	2.8	27
6	Copper-catalyzed sulfonylation of <i>N</i> -tosylhydrazones followed by a one-pot C–N bond formation. Organic and Biomolecular Chemistry, 2021, 19, 5358-5367.	2.8	3
7	Synthesis and Biological Activities of Pyrazino[1,2-a]indole and Pyrazino[1,2-a]indol-1-one Derivatives. Pharmaceuticals, 2021, 14, 779.	3.8	14
8	Anticancer properties of indole derivatives as IsoCombretastatin A-4 analogues. European Journal of Medicinal Chemistry, 2021, 223, 113656.	5.5	18
9	Synthesis of Oxazino [4,3-a] indoles and biological applications. European Journal of Medicinal Chemistry, 2021, 224, 113728.	5.5	11
10	Synthesis of 2,3-Substituted β-N-Glycosyl Indoles through C–H Activation/Annulation Process under Rh(III)-Catalysis. Organic Letters, 2020, 22, 57-61.	4.6	12
11	Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. European Journal of Medicinal Chemistry, 2020, 190, 112110.	5.5	33
12	Mild Deprotection of Dithioacetals by TMSCI/Nal Association in CH 3 CN. European Journal of Organic Chemistry, 2020, 2020, 5775-5779.	2.4	6
13	Synthesis and Anticancer Properties of Oxazepines Related to Azaisoerianin and IsoCoQuines. ChemMedChem, 2020, 15, 1571-1578.	3.2	2
14	Synthesis of 2-substituted indoles through cyclization and demethylation of 2-alkynyldimethylanilines by ethanol. Green Chemistry, 2019, 21, 4204-4210.	9.0	18
15	Hydrostannation of Alkynes. ACS Catalysis, 2019, 9, 3437-3466.	11.2	45
16	N,N-bis-heteroaryl methylamines: Potent anti-mitotic and highly cytotoxic agents. European Journal of Medicinal Chemistry, 2019, 168, 176-188.	5.5	23
17	Unexpected Oxidative Ring Opening of Electron-Rich 3-Aminobenzofurans into α-Ketoimines Derivatives. Journal of Organic Chemistry, 2019, 84, 1725-1733.	3.2	4
18	1,1-Diheterocyclic Ethylenes Derived from Quinaldine and Carbazole as New Tubulin-Polymerization Inhibitors: Synthesis, Metabolism, and Biological Evaluation. Journal of Medicinal Chemistry, 2019, 62, 1902-1916.	6.4	43

#	Article	IF	Citations
19	Chlorotrimethylsilane and Sodium Iodide: A Remarkable Metalâ€Free Association for the Desulfurization of Benzylic Dithioketals under Mild Conditions. Advanced Synthesis and Catalysis, 2018, 360, 2522-2536.	4.3	12
20	PtO ₂ /PTSA system catalyzed regioselective hydration of internal arylalkynes bearing electron withdrawing groups. RSC Advances, 2018, 8, 11536-11542.	3.6	15
21	One-Pot Synthesis of 2-Styrylindoles from <i>Ortho</i> -Substituted Chloroenynes. Journal of Organic Chemistry, 2018, 83, 15323-15332.	3.2	8
22	Chlorotrimethylsilane and Sodium Iodide: A Useful Combination for the Regioselective Deoxygenation of Arylalkylâ€Î±â€Diketones. Advanced Synthesis and Catalysis, 2017, 359, 2682-2691.	4.3	9
23	Synthesis and functionalization of 3-bromo-2-(2-chlorovinyl)benzothiophenes as molecular tools. RSC Advances, 2017, 7, 46007-46013.	3.6	6
24	Metalâ€Catalyzed Synthesis of 1,1â€Diarylethylene Scaffolds. Asian Journal of Organic Chemistry, 2017, 6, 1509-1518.	2.7	4
25	Desulfurization of Thioketals into Methylene and Methyl Derivatives: Nickel or not Nickel?. ChemistrySelect, 2017, 2, 10951-10959.	1.5	9
26	Design, synthesis and anticancer properties of IsoCombretaQuinolines as potent tubulin assembly inhibitors. European Journal of Medicinal Chemistry, 2017, 127, 1025-1034.	5 . 5	65
27	Synthesis of Substituted Benzils from Diarylalkyne Oxidation. Synthesis, 2017, 49, 504-525.	2.3	14
28	Selective Metal-Free Deoxygenation of Unsymmetrical 1,2-Dicarbonyl Compounds by Chlorotrimethylsilane and Sodium Iodide. Organic Letters, 2016, 18, 3238-3241.	4.6	12
29	<i>lso</i> CombretaQuinazolines: Potent Cytotoxic Agents with Antitubulin Activity. ChemMedChem, 2015, 10, 1392-1402.	3.2	52
30	Rapid synthesis of 4-arylchromenes from ortho-substituted alkynols: A versatile access to restricted isocombretastatin A-4 analogues as antitumor agents. European Journal of Medicinal Chemistry, 2015, 90, 834-844.	5.5	31
31	Discovery of azaisoerianin derivatives as potential antitumors agents. European Journal of Medicinal Chemistry, 2014, 78, 178-189.	5.5	38
32	Therapeutic Modalities of Squalenoyl Nanocomposites in Colon Cancer: An Ongoing Search for Improved Efficacy. ACS Nano, 2014, 8, 2018-2032.	14.6	67
33	Csp ² â€"N Bond Formation via Ligand-Free Pd-Catalyzed Oxidative Coupling Reaction of <i>N</i> -Tosylhydrazones and Indole Derivatives. Journal of Organic Chemistry, 2013, 78, 8485-8495.	3.2	38
34	Synthesis of <i>Ortho</i> / <i>Ortho</i> àꀲ-Substituted 1,1-Diarylethylenes through Cross-Coupling Reactions of Sterically Encumbered Hydrazones and Aryl Halides. Journal of Organic Chemistry, 2013, 78, 445-454.	3.2	54
35	Design, synthesis and anticancer properties of 5-arylbenzoxepins as conformationally restricted iso combretastatin A-4 analogs. European Journal of Medicinal Chemistry, 2013, 62, 28-39.	5 . 5	39
36	Discovery and Hit to Lead Optimization of Novel Combretastatin A-4 Analogues: Dependence of C-Linker Length and Hybridization. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1614-1635.	1.7	17

#	Article	IF	CITATIONS
37	Conformationnally restricted naphthalene derivatives type isocombretastatin A-4 and isoerianin analogues: Synthesis, cytotoxicity and antitubulin activity. European Journal of Medicinal Chemistry, 2012, 52, 22-32.	5 . 5	64
38	A Oneâ€Pot Threeâ€Step Synthesis of <i>Z</i> â€Trisubstituted Olefins from Arylalkynes and Their Cyclization into 4â€Arylâ€2 <i>H</i> â€chromenes. European Journal of Organic Chemistry, 2012, 2012, 1603-1615.	2.4	19
39	The Metabolic Fate of <i>iso</i> Combretastatin Aâ€4 in Human Liver Microsomes: Identification, Synthesis and Biological Evaluation of Metabolites. ChemMedChem, 2011, 6, 1781-1788.	3.2	15
40	Palladiumâ€Catalyzed Coupling of 3â€Haloâ€Substituted Coumarins, Chromenes, and Quinolones with Various Nitrogenâ€Containing Nucleophiles. European Journal of Organic Chemistry, 2011, 2011, 5077-5088.	2.4	33
41	Synthesis of 2-(1-Phenylvinyl)benzofurans and 2-(1-Phenylvinyl)indoles as Antimitotic Agents by a Tandem Palladium-Assisted Coupling-Cyclization Reaction between 1-Phenylvinyl lodides and ortho-Substituted Arylalkynes. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	7
42	Discovery of Isoerianin Analogues as Promising Anticancer Agents. ChemMedChem, 2011, 6, 488-497.	3.2	128
43	Bâ€Ringâ€Modified <i>iso</i> Combretastatin Aâ€4 Analogues Endowed with Interesting Anticancer Activities. ChemMedChem, 2011, 6, 2179-2191.	3.2	44
44	Palladium-catalyzed coupling of N-tosylhydrazones with ortho substituted aryl halides: synthesis of 4-arylchromenes and related heterocycles. Tetrahedron Letters, 2011, 52, 1036-1040.	1.4	36
45	Regioselective hydrostannation of diarylalkynes directed by a labile ortho bromine atom: An easy access to stereodefined triarylolefins, hybrids of combretastatin A-4 and isocombretastatin A-4. European Journal of Medicinal Chemistry, 2010, 45, 3617-3626.	5. 5	24
46	p-Toluenesulfonic acid-promoted selective functionalization of unsymmetrical arylalkynes: a regioselective access to various arylketones and heterocycles. Tetrahedron, 2010, 66, 3775-3787.	1.9	76
47	Suzuki Coupling Reactions of (<i>E</i>)―and (<i>Z</i>) hloroenynes with Boronic Acids: Versatile Access to Functionalized 1,3â€Enynes. European Journal of Organic Chemistry, 2010, 2010, 725-731.	2.4	18
48	MPHT-Promoted Bromocyclization of ortho-Substituted Arylalkynes: Application to the Synthesis of 2-Substituted 3-Bromobenzofurans and -Benzo[b]thiophenes. European Journal of Organic Chemistry, 2010, 2010, n/a-n/a.	2.4	13
49	Regioselective hydrostannation of highly hindered arylalkynes under ortho-directing effects. Tetrahedron, 2010, 66, 8698-8706.	1.9	9
50	Synthesis, Biological Evaluation of 1,1â€Diarylethylenes as a Novel Class of Antimitotic Agents. ChemMedChem, 2009, 4, 1912-1924.	3.2	82
51	p-Toluenesulfonic acid-mediated cyclization of o-(1-alkynyl)anisoles or thioanisoles: synthesis of 2-arylsubstituted benzofurans and benzothiophenes. Tetrahedron Letters, 2009, 50, 3588-3592.	1.4	58
52	Expeditious synthesis of 1,1-diarylethylenes related to isocombretastatin A-4 (isoCA-4) via palladium-catalyzed arylation of N-tosylhydrazones with aryl triflates. Tetrahedron Letters, 2009, 50, 6549-6552.	1.4	88
53	<i>lso</i> combretastatins A versus Combretastatins A: The Forgotten <i>iso</i> CA-4 Isomer as a Highly Promising Cytotoxic and Antitubulin Agent. Journal of Medicinal Chemistry, 2009, 52, 4538-4542.	6.4	231
54	Palladium-Catalyzed Markovnikov Terminal Arylalkynes Hydrostannation: Application to the Synthesis of 1,1-Diarylethylenes. Journal of Organic Chemistry, 2009, 74, 1337-1340.	3.2	54

#	Article	IF	CITATIONS
55	Synthesis and antitumor activity of benzils related to combretastatin A-4. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3266-3271.	2.2	96
56	DMSO–PdI2 as a powerful oxidizing couple of alkynes into benzils: one-pot synthesis of nitrogen-containing five- or six-membered heterocycles. Tetrahedron, 2008, 64, 4287-4294.	1.9	92
57	One-pot hydrosilylation–protodesilylation of functionalized diarylalkynes: a highly selective access to Z-stilbenes. Application to the synthesis of combretastatin A-4. Tetrahedron Letters, 2008, 49, 1107-1110.	1.4	67
58	Regiocontrol of the Palladium-Catalyzed Tin Hydride Addition toZ-Enynols:Â RemarkableZ-Directing Effects. Journal of Organic Chemistry, 2007, 72, 3868-3874.	3.2	36
59	Palladium mediated direct coupling of silylated arylalkynes with propargylic chlorides: an efficient access to functionalized conjugated allenynes. Tetrahedron Letters, 2007, 48, 6022-6026.	1.4	14
60	Microwave-assisted efficient synthesis of 1,2-diaryldiketones: a novel oxidation reaction of diarylalkynes with DMSO promoted by FeBr3. Tetrahedron, 2006, 62, 7667-7673.	1.9	65
61	Disproportionation reaction of diarylmethylisopropyl ethers: a versatile access to diarylmethanes from diarylcarbinols speeded up by the use of microwave irradiation. Tetrahedron, 2006, 62, 11994-12002.	1.9	34
62	Rapid microwave assisted hydration of internal arylalkynes in the presence of PTSA: an efficient regioselective access to carbonyl compounds. Tetrahedron Letters, 2006, 47, 5497-5501.	1.4	46
63	N-Methylpyrrolidin-2-one hydrotribromide (MPHT) a mild reagent for selective bromination of carbonyl compounds: synthesis of substituted 2-bromo-1-naphtols. Tetrahedron Letters, 2005, 46, 4187-4191.	1.4	48
64	Synthetic approach to enyne and enediyne analogues of anticancer agents. Tetrahedron Letters, 2005, 46, 8547-8550.	1.4	47
65	Platinum Oxide Catalyzed Hydrosilylation of Unsymmetrical Internal Aryl Alkynes under Ortho-Substituent Regiocontrol. Organic Letters, 2005, 7, 5625-5628.	4.6	73
66	Synthesis of substituted quinolines by iron-catalyzed coupling reactions between chloroenynes and Grignard reagents. Tetrahedron Letters, 2004, 45, 1881-1884.	1.4	47
67	Synthesis of Dihydroâ€5 <i>H</i> â€Benzo[<i>c</i>]â€Fluorenes, Dihydroindeno[<i>c</i>]â€Chromenes and Thiochromenes <i>via</i> Intramolecular Cyclization and their Effect on Human Leukemia Cells. Advanced Synthesis and Catalysis, 0, , .	4.3	1