Konstantinos Kontis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4782061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical study of complex flow physics and coherent structures of the flow through a convoluted duct. Aerospace Science and Technology, 2022, 121, 107191.	2.5	11
2	Surface Roughness Benefits in Open Cavity Flows. , 2022, , .		2
3	Characterization of a Low Profile, Rapidly Deployable, MEMS Pressure Sensor Array for Aerodynamic Applications , 2022, , .		Ο
4	An open source code for two-phase rarefied flows: rarefiedMultiphaseFoam. Computer Physics Communications, 2022, 276, 108339.	3.0	7
5	Impact of Stagnation Temperature and Nozzle Configuration on Rarefied Jet Plume Interactions. Journal of Spacecraft and Rockets, 2022, 59, 1536-1551.	1.3	3
6	Development of unsteady background-oriented schlieren system in an indraft supersonic wind tunnel. Journal of Physics: Conference Series, 2021, 1786, 012052.	0.3	0
7	Experimental investigation of sonic transverse jets in Mach 5 crossflow. Aerospace Science and Technology, 2021, 110, 106419.	2.5	27
8	Numerical investigation of rarefied vortex loop formation due to shock wave diffraction with the use of rorticity. Physics of Fluids, 2021, 33, .	1.6	7
9	Automatic Shock Detection, Extraction, and Fitting in Schlieren and Shadowgraph Visualization. AIAA Journal, 2021, 59, 2312-2317.	1.5	3
10	The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow. Aerospace, 2021, 8, 255.	1.1	5
11	Normal shock wave attenuation during propagation in ducts with grooves. Shock Waves, 2020, 30, 91-113.	1.0	6
12	Application of laser energy deposition to improve performance for high speed intakes. Propulsion and Power Research, 2020, 9, 15-25.	2.0	20
13	Experimental investigations on the sharp leading-edge separation over a flat plate at zero incidence using particle image velocimetry. Experiments in Fluids, 2020, 61, 1.	1.1	7
14	Thermal Fluctuation Characteristics around a Nanosecond Pulsed Dielectric Barrier Discharge Plasma Actuator using a Frequency Analysis based on Schlieren Images. Energies, 2020, 13, 628.	1.6	15
15	Effect of permittivity and frequency on induced velocity in ac-DBD surface and channel plasma actuators. Sensors and Actuators A: Physical, 2020, 303, 111831.	2.0	16
16	Investigation of Variable Geometry Intake to Mitigate Unwanted Shock-Shock Interactions in a Hypersonic Air-Breathing Propulsion Device. Lecture Notes in Mechanical Engineering, 2020, , 71-79.	0.3	0
17	Wake Flow Characteristics over an Articulated Lorry Model with/without AC-DBD Plasma Actuation. Applied Sciences (Switzerland), 2019, 9, 2426.	1.3	4
18	Characterization of a novel open-ended shock tube facility based on detonation transmission tubing. Aerospace Science and Technology, 2019, 94, 105388.	2.5	17

4

#	Article	IF	CITATIONS
19	A Numerical Investigation of Shock Wave Propagation in Ducts with Grooves , 2019, , .		0
20	Special Issue "8th EASN–CEAS Workshop on Manufacturing for Growth and Innovation― Aerospace, 2019, 6, 84.	1.1	0
21	Correlation Analysis of Separation Shock Oscillation and Wall Pressure Fluctuation in Unstarted Hypersonic Inlet Flow. Aerospace, 2019, 6, 8.	1.1	19
22	Pressure dependency on a nanosecond pulsed dielectric barrier discharge plasma actuator. Physics of Plasmas, 2019, 26, .	0.7	12
23	Shock Train Structures in Rectangular Ducts. , 2019, , 769-776.		0
24	Image Processing Techniques for Shock Wave Detection and Tracking in High Speed Schlieren and Shadowgraph Systems. Journal of Physics: Conference Series, 2019, 1215, 012021.	0.3	10
25	Microvortex generator for scramjet inlet application. , 2019, , .		7
26	Effect on Shock Train Behaviour of the Addition of a Cavity for Supersonic Intakes. , 2019, , 777-784.		0
27	Effect of back-pressure forcing on shock train structures in rectangular channels. Acta Astronautica, 2018, 145, 471-481.	1.7	35
28	Shock Interactions with Structures and Their Associated Induced Flows. Springer Transactions in Civil and Environmental Engineering, 2018, , 157-170.	0.3	1
29	Experimental and Numerical Visualisation ofÂSupersonic Flow over the British Isles. , 2018, , 155-164.		0
30	Temporal variation of the spatial density distribution above a nanosecond pulsed dielectric barrier discharge plasma actuator in quiescent air. Physics of Fluids, 2018, 30, .	1.6	31
31	Background-Oriented Schlieren (BOS) for Scramjet Inlet-isolator Investigation. IOP Conference Series: Materials Science and Engineering, 2018, 370, 012003.	0.3	4
32	A review of flow control techniques and optimisation in s-shaped ducts. International Journal of Heat and Fluid Flow, 2018, 74, 223-235.	1.1	24
33	Flow structure generated by laser-induced blast wave propagation through the boundary layer of a flat plate. Aerospace Science and Technology, 2018, 78, 569-573.	2.5	12
34	Numerical investigation on three-dimensional shock train structures in rectangular isolators. European Journal of Mechanics, B/Fluids, 2018, 72, 586-593.	1.2	26
35	Conceptual design analysis for a two-stage-to-orbit semi-reusable launch system for small satellites. Acta Astronautica, 2018, 152, 782-792.	1.7	5

Vehicle and Mission Design of a Future Small Payload Launcher. , 2017, , .

3

#	Article	IF	CITATIONS
37	Supersonic flow over rounded contour bumps with vortex generators or passive longitudinal jets. Experimental Thermal and Fluid Science, 2017, 85, 213-228.	1.5	7
38	Experimental Investigations of Three-Dimensional Shock-Vortex Loop Interaction: Shock Reflection and Diffraction Phenomena., 2017, , 1127-1132.		0
39	Flow characteristics of various three-dimensional rounded contour bumps in a Mach 1.3 freestream. Experimental Thermal and Fluid Science, 2017, 80, 228-243.	1.5	7
40	Experimental investigation of surface flow pattern on truncated cones in Mach 5 flow: Influence of truncation ratio. Experimental Thermal and Fluid Science, 2017, 81, 396-405.	1.5	7
41	Flow around an articulated lorry model. Experimental Thermal and Fluid Science, 2017, 82, 58-74.	1.5	20
42	Flow visualisation of a normal shock impinging over a rounded contour bump in a Mach 1.3 free-stream. Journal of Visualization, 2017, 20, 237-249.	1.1	4
43	Suspended liquid particle disturbance on laser-induced blast wave and low density distribution. Physics of Fluids, 2017, 29, .	1.6	5
44	Static and Wind-on Performance of Polymer-Based Pressure-Sensitive Paints Using Platinum and Ruthenium as the Luminophore. Sensors, 2016, 16, 595.	2.1	12
45	Three-dimensional shock wave distortion in shock-square vortex loop interaction. Experimental Thermal and Fluid Science, 2016, 79, 85-90.	1.5	4
46	Wind tunnel experiments of novel wing configurations for design and customisation in an industry 4.0 environment. , 2016, , .		1
47	Flow characteristics over a tractor-trailer model with and without vane-type vortex generator installed. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159, 110-122.	1.7	12
48	Shock wave diffraction in the presence of a supersonic co-flow jet. Shock Waves, 2016, 26, 253-262.	1.0	1
49	Active flow control over a backward-facing step using plasma actuation. Acta Astronautica, 2016, 126, 354-363.	1.7	24
50	Numerical and experimental capabilities for studying rocket plume-regolith interactions. AIP Conference Proceedings, 2016, , .	0.3	7
51	Pressure sensitive paint measurements at high Mach numbers. Flow Measurement and Instrumentation, 2016, 52, 10-16.	1.0	22
52	Control of Low-Speed Cavity Flow Using Steady Jets. , 2016, , .		1
53	Joule heating flow control methods for high-speed flows. Journal of Electrostatics, 2016, 80, 34-68.	1.0	46
54	Control of flow separation on a contour bump by jets in a Mach 1.9 free-stream: An experimental study. Acta Astronautica, 2016, 126, 229-242.	1.7	18

#	Article	IF	CITATIONS
55	Pseudo-shock waves and their interactions in high-speed intakes. Progress in Aerospace Sciences, 2016, 82, 36-56.	6.3	128
56	Flow Characteristics along an Active Jets Equipped Contour Bump in a Supersonic Freestream and Its Potential to be Applied on Transonic Aircraft for Drag Reduction: An Experimental Study. , 2015, , .		2
57	Flow Physics of a Three-Dimensional Rounded Contour Bump in a Mach 1.3 Supersonic Free-stream. , 2015, , .		2
58	Shock Wave Diffraction Phenomena around Slotted Splitters. Aerospace, 2015, 2, 1-16.	1.1	4
59	Development of DBD plasma actuators: The double encapsulated electrode. Acta Astronautica, 2015, 109, 132-143.	1.7	58
60	Transverse jet-cavity interactions with the influence of an impinging shock. International Journal of Heat and Fluid Flow, 2015, 53, 146-155.	1.1	38
61	Driving Forward Innovation in High Speed Aerodynamics and Flow Diagnostics. , 2015, , 19-26.		Ο
62	Micro-Ramps Flow Characteristics at Mach 1.9 & 5. , 2015, , 1229-1234.		0
63	Incident Shock-Transverse Jet Interactions at Mach 1.9: Effect of Shock Impingement Location. , 2015, , 1181-1186.		Ο
64	Some Challenging Studies on Shock Wave Boundary Layer Interactions Using AdvancedÂFlow Diagnostics. Fluid Mechanics and Its Applications, 2015, , 19-30.	0.1	0
65	Aerospace—An Open Access Journal. Aerospace, 2014, 1, 97-97.	1.1	Ο
66	Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow. Sensors, 2014, 14, 23462-23489.	2.1	25
67	Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator. Sensors, 2014, 14, 6606-6632.	2.1	50
68	Detonation-driven–shock wave interactions with perforated plates. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228, 671-678.	0.7	3
69	Flow Control at Subsonic Speeds using Serpentine Plasma Actuators. , 2014, , .		Ο
70	Microjet Flow Control Effectiveness of Cavity Configurations at Low Speeds. Journal of Aircraft, 2014, 51, 1391-1400.	1.7	3
71	Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations. Physics of Fluids, 2014, 26, .	1.6	49
72	Selected topics from the 28th International Symposium on Shock Waves, July 17–22, 2011, Manchester, UK. Shock Waves, 2014, 24, 1-1.	1.0	2

3

#	Article	IF	CITATIONS
73	Effects of dual jets distance on mixing characteristics and flow path within a cavity in supersonic crossflow. International Journal of Heat and Fluid Flow, 2014, 50, 254-262.	1.1	43
74	Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow. Experimental Thermal and Fluid Science, 2014, 52, 59-67.	1.5	69
75	Experimental investigation on shock wave diffraction over sharp and curved splitters. Acta Astronautica, 2014, 99, 143-152.	1.7	18
76	Experimental Investigation of Impinging Shock – Cavity Interactions with Upstream Transverse Jet Injection. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2014, 12, Pe_57-Pe_62.	0.1	4
77	Effectiveness of Flow Separation Control on Contour Bumps under a Mach 1.3 Freestream: An Experimental Study. , 2014, , .		0
78	Steady energy deposition at Mach 5 for drag reduction. Shock Waves, 2013, 23, 285.	1.0	18
79	Micro-blast waves using detonation transmission tubing. Shock Waves, 2013, 23, 307-316.	1.0	21
80	Head on collisions of compressible vortex rings on a smooth solid surface. Shock Waves, 2013, 23, 381-398.	1.0	8
81	Application of pressure-sensitive paint to low-speed flow around a U-bend of strong curvature. Experimental Thermal and Fluid Science, 2013, 48, 58-66.	1.5	19
82	Experiments on transitional shock waveboundary layer interactions at Mach 5. Experiments in Fluids, 2013, 54, 1.	1.1	27
83	Shock-free compressible vortex rings impinging on a stationary surface: Effects of surface angle variation. Experimental Thermal and Fluid Science, 2013, 47, 126-142.	1.5	9
84	Selected topics from the 28th international symposium on shock waves, July 17–22, 2011, Manchester, UK. Shock Waves, 2013, 23, 283-283.	1.0	0
85	Optimisation of multiple encapsulated electrode plasma actuator. Aerospace Science and Technology, 2013, 26, 120-127.	2.5	47
86	Pressure-Sensitive Paint Measurements of Transient Shock Phenomena. Sensors, 2013, 13, 4404-4427.	2.1	17
87	A note on the generation of a compressible vortex rings using helium as driver gas. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227, 1637-1645.	0.7	4
88	Multiple Encapsulated Electrode Plasma Actuator Effect on Aerofoil-Wake Interaction. , 2013, , .		1
89	Single Pulse Laser Energy Deposition in Quiescent Air and Hypersonic Flows. , 2012, , .		2

90 Micro-Ramps in Mach 5 Hypersonic Flow. , 2012, , .

#	Article	IF	CITATIONS
91	Anodized aluminium pressure sensitive paint: Effect of paint application technique. Measurement: Journal of the International Measurement Confederation, 2012, 45, 1902-1905.	2.5	13
92	Plasma actuator: Influence of dielectric surface temperature. Experimental Thermal and Fluid Science, 2012, 42, 258-264.	1.5	38
93	Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance. Journal Physics D: Applied Physics, 2012, 45, 225201.	1.3	20
94	Pressure-sensitive paint on a truncated cone in hypersonic flow at incidences. International Journal of Heat and Fluid Flow, 2012, 37, 9-21.	1.1	21
95	Experimental Investigation of Transverse Injection Flowfield at March 5 and the Influence of Impinging Shock Wave. , 2012, , .		11
96	Flow Control of a NACA0015 Airfoil in a Turbulent Wake Using Plasma Actuators. , 2012, , .		2
97	Micro-Ramps for Hypersonic Flow Control. Micromachines, 2012, 3, 364-378.	1.4	47
98	Investigation of the double ramp in hypersonic flow using luminescent measurement systems. Experimental Thermal and Fluid Science, 2012, 40, 50-56.	1.5	47
99	Application of AA-PSP to hypersonic flows: The double ramp model. Sensors and Actuators B: Chemical, 2012, 161, 100-107.	4.0	34
100	Steady Energy Deposition at Mach 5 for Drag Reduction. , 2012, , 879-886.		2
101	Effect of Roughness in Jets in Mach 5 Cross Flow. , 2012, , 185-191.		0
102	Application of Pressure- and Temperature-Sensitive Paint in a Hypersonic Double Ramp Flow. , 2012, , 759-765.		1
103	Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets. Journal Physics D: Applied Physics, 2011, 44, 155206.	1.3	85
104	Schlieren Photography of the Outflow From a Plasma Jet. IEEE Transactions on Plasma Science, 2011, 39, 2312-2313.	0.6	56
105	Drag Reduction Studies by Steady Energy Deposition at Mach 5. , 2011, , .		11
106	Optimization of Induced Velocity for Plasma Actuator with Multiple Encapsulated Electrodes using Response Surface Methodology. , 2011, , .		2
107	Pressure-Sensitive Paint Application on Two-Dimensional and Axisymmetric Model in Hypersonic Flow. , 2011, , .		2
108	The Influence of Electrode Configuration and Dielectric Temperature on Plasma Actuator		9

Performance., 2011,,.

7

#	Article	IF	CITATIONS
109	Compressible Vortex Loops in a Shock Tube with Helium Driver. , 2011, , .		0
110	Report on the 28th International Symposium on Shock Waves. Shock Waves, 2011, 21, 579-580.	1.0	0
111	Effect of primary jet geometry on ejector performance: A cold-flow investigation. International Journal of Heat and Fluid Flow, 2011, 32, 596-607.	1.1	33
112	Quantum efficiencies, absolute intensities and signalâ€ŧoâ€blackbody ratios of highâ€ŧemperature laserâ€ɨnduced thermographic phosphors. Luminescence, 2011, 26, 640-649.	1.5	8
113	Progress towards absolute intensity measurements of emissions from high temperature thermographic phosphors. Journal of Luminescence, 2011, 131, 1312-1321.	1.5	17
114	Experimental Studies of Open Cavity Configurations at Transonic Speeds with Flow Control. Journal of Aircraft, 2011, 48, 719-724.	1.7	12
115	Pressure-Sensitive Paint: Effect of Substrate. Sensors, 2011, 11, 11649-11663.	2.1	42
116	Numerical and experimental investigation of transverse injection flows. Shock Waves, 2010, 20, 103-118.	1.0	124
117	Shock wave-induced vortex loops emanating from nozzles with singular corners. Experiments in Fluids, 2010, 49, 1005-1019.	1.1	22
118	Global unsteady pressure-sensitive paint measurements of a moving shock wave using thin-layer chromatography. Measurement: Journal of the International Measurement Confederation, 2010, 43, 152-155.	2.5	27
119	Experimental studies on coaxial vortex loops. Physics of Fluids, 2010, 22, .	1.6	16
120	Experimental Studies on Transitional and Closed Cavity Configurations Including Flow Control. Journal of Aircraft, 2010, 47, 723-729.	1.7	11
121	Study of Detonation Interactions Inside a Two-Dimensional Ejector Using Detonation Transmission Tubing. Journal of Propulsion and Power, 2010, 26, 878-882.	1.3	10
122	Phosphor thermometry in gas turbines: Consideration factors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010, 224, 745-755.	0.7	26
123	Plasma Actuator with Multiple Encapsulated Electrodes to Influence the Induced Velocoty. , 2010, , .		6
124	Experimental Studies on Co-Axial Vortex Loops. , 2010, , .		1
125	Multiple Encapsulated Electrode Plasma Actuators to Influence the Induced Velocity: Further Configurations. , 2010, , .		13
126	Effects of filters on the performance and characteristics of pressure-sensitive paints. Measurement Science and Technology, 2009, 20, 077004.	1.4	12

4

#	Article	IF	CITATIONS
127	Compressible Flow Structures Interaction with a Two-Dimensional Ejector: A Cold-Flow Study. Journal of Propulsion and Power, 2009, 25, 707-716.	1.3	13
128	Clobal visualization and quantification of compressible vortex loops. Journal of Visualization, 2009, 12, 233-240.	1.1	16
129	PSP visualization studies on a convergent nozzle with an. Journal of Visualization, 2009, 12, 157-163.	1.1	12
130	Application of novel pressure-sensitive paint formulations for the surface flow mapping of high-speed jets. Experimental Thermal and Fluid Science, 2009, 33, 852-864.	1.5	28
131	Compressible vortex loops: Effect of nozzle geometry. International Journal of Heat and Fluid Flow, 2009, 30, 561-576.	1.1	32
132	2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry. Measurement Science and Technology, 2009, 20, 025305.	1.4	72
133	Effects of Exit Nozzle Diameter on Compressible Vortex Rings Flow Structure. , 2009, , .		6
134	Non-Plasma and Plasma Transverse Jets in Hypersonic Cross Flow. , 2009, , .		8
135	Drag Reduction by Energy Deposition in Hypersonic Flows. , 2009, , .		12
136	Pneumatic flow control studies using steady blowing on a supercritical aerofoil. Aeronautical Journal, 2009, 113, 53-63.	1.1	0
137	Optical Altitude Sensor Based on Pressure Sensitive Paints (PSP). International Journal of Aerospace Innovations, 2009, 1, 11-21.	0.2	3
138	Application of pressure-sensitive paints in high-speed flows. , 2009, , 497-502.		0
139	Fluidic control of cavity configurations at transonic and supersonic speeds. , 2009, , 1267-1272.		0
140	Shock wave interactions inside a complex geometry. , 2009, , 1479-1484.		0
141	Effect of dimples on glancing shock wave turbulent boundary layer interactions. Shock Waves, 2008, 17, 323-335.	1.0	19
142	Head-on collision of shock wave induced vortices with a cylinder and a sphere. International Journal of Heat and Fluid Flow, 2008, 29, 1380-1392.	1.1	13
143	Greek police officers' attitudes towards the mentally ill. International Journal of Law and Psychiatry, 2008, 31, 77-85.	0.5	41

Active and Passive Flow Control Studies at Subsonic Speeds at the University of Manchester. , 2008, , .

#	Article	IF	CITATIONS
145	Application of Pressure Sensitive Paint Measurements to Complex Flows. , 2008, , .		2
146	Numerical Investigation of Flowfield Inside a Conical Rocket Nozzle in the Presence of Transverse Injection. , 2008, , .		2
147	Compressible Vortex Loops Studies in a Shock Tube with Various Exit Geometries. , 2008, , .		5
148	Active Flow Control Using Steady and Pulsed Blowing at Subsonic Speeds. , 2008, , .		3
149	Oscillation Effects on Boundary-Layer Development Under the Influence of Favourable Pressure Gradients. Journal of Aircraft, 2008, 45, 1955-1968.	1.7	1
150	Application of Piezoelectric Actuators at Subsonic Speeds. Journal of Aircraft, 2008, 45, 1419-1430.	1.7	13
151	Head-on collision of shock wave induced vortices with solid and perforated walls. Physics of Fluids, 2008, 20, .	1.6	41
152	Experimental investigations of compressible vortex loops. Physics of Fluids, 2008, 20, .	1.6	38
153	Flow control effectiveness of jets, strakes, and flares at hypersonic speeds. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222, 585-603.	0.7	16
154	Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications. Sensors, 2008, 8, 5673-5744.	2.1	322
155	Passive Control of Bluff Body Using Stepped-Nose Obstacle. Journal of Aircraft, 2007, 44, 1753-1755.	1.7	0
156	Flow Control by Spanwise Blowing on a NACA 0012. Journal of Aircraft, 2007, 44, 337-340.	1.7	16
157	Effect of Oscillation on Boundary-Layer Development with Adverse Pressure Gradients. Journal of Aircraft, 2007, 44, 875-887.	1.7	5
158	Experimental Studies on Unsteady Lateral Blowing on NACA 0012. Journal of Aircraft, 2007, 44, 2080-2083.	1.7	2
159	Effect of oscillation on skin friction drag under the influence of adverse pressure gradients. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 2007, 221, 831-845.	0.7	1
160	A review of some current research on pressure sensitive paint and thermographic phosphor techniques. Aeronautical Journal, 2007, 111, 495-508.	1.1	33
161	Experimental Studies on Steady and Unsteady Pneumatic Trailing Edge Devices for Subsonic Flow Applications. , 2007, , .		2
162	Effect of Oscillation on Skin Friction Drag under the Influence of Adverse Pressure Gradients. , 2007, ,		1

.

#	Article	IF	CITATIONS
163	Effect of Piezoelectric Actuation on a NACA 0015 Aerofoil at Subsonic Speeds. , 2006, , .		2
164	Experimental Studies on the Application of Circulation Control in Subsonic Flows. , 2006, , .		2
165	Head-on Interaction of Shock Waves and Vortex Rings with Solid and Perforated Walls. , 2006, , .		3
166	Effect of Flat Plate Oscillation on Boundary Layer Development for Subsonic Flows. , 2006, , .		3
167	Vortex Ring Interaction Studies with a Cylinder and a Sphere. , 2006, , .		2
168	Compressible Vortex-Ring Interaction Studies with a Number of Generic Body Configurations. AIAA Journal, 2006, 44, 2962-2978.	1.5	47
169	Synthetic Jet Control Effectiveness on Stationary and Pitching Airfoils. Journal of Aircraft, 2006, 43, 1782-1789.	1.7	27
170	Numerical Studies on an Active Flow Circulation Controlled Flap Concept for Aeronautical Applications. Transactions of the Japan Society for Aeronautical and Space Sciences, 2006, 49, 25-30.	0.4	1
171	Aerodynamic effectiveness of the flow of exhaust gases in a generic formula one car configuration. Aeronautical Journal, 2006, 110, 573-587.	1.1	0
172	Experimental studies on the interaction of jets with the vortex wake of slender bodies. Journal of Visualization, 2005, 8, 109-116.	1.1	1
173	Compressible Vortex-Ring Interaction Studies with a Number of Generic Body Configurations. , 2005, , .		5
174	Studies on the Control Effectiveness of Vortex Generators for Hull Body Applications. , 2005, , .		0
175	Parametric Studies on the Control Effectiveness of Effectors at Subsonic Speeds. , 2005, , .		0
176	Control Effectiveness of Synthetic Jet on Bluff Body. , 2005, , .		0
177	Perfomance Enhancement Studies of a Generic Formula One Car Body. , 2005, , .		0
178	Jet Control Effectiveness Studies on a Flat-Plate Body at Hypersonic Speeds. Transactions of the Japan Society for Aeronautical and Space Sciences, 2004, 47, 131-137.	0.4	7
179	Effect of Dimples on Glancing Shock Wave-Turbulent Boundary Layer Interactions. , 2004, , .		5
180	Passive Control of Shockwave-Boundary Layer Interactions Using Ultrasonically Absorptive Surfaces. , 2004, , .		0

#	Article	IF	CITATIONS
181	Numerical Studies on Active Flow Circulation Controlled Flap Concept for Aeronautical Applications. , 2004, , .		2
182	Mast Device for Aerodynamic Improvement of Sail Boats. , 2004, , .		0
183	Numerical Studies on the Application of Synthetic Jets for the Active Control of Subsonic Flow Configurations. , 2004, , .		1
184	Molecular Image Sensing for Pressure and Temperature Surface Mapping of Aerodynamic Flows. , 2004, , .		4
185	Surface Heat Transfer Measurements by LIF in Reactive Flows. , 2004, , .		0
186	Flare-Control Effectiveness at Hypersonic Speeds. Transactions of the Japan Society for Aeronautical and Space Sciences, 2004, 47, 116-123.	0.4	2
187	Surface Heat Transfer Measurements Inside a Supersonic Combustor by Laser-Induced Fluorescence. Journal of Thermophysics and Heat Transfer, 2003, 17, 320-325.	0.9	30
188	Surface Heat-Transfer Measurements Inside a Supersonic Combustor by LIF. , 2002, , .		0
189	Surface Thermometry by Laser-Induced Fluorescence in High Speed Flows. , 2002, , .		0
190	Hypersonic Performance of a Lifting Elliptic Cone with and Without Strakes. Journal of Spacecraft and Rockets, 2000, 37, 21-27.	1.3	10
191	Control Effectiveness of Strake-Slender Body Combinations at Hypersonic Speeds Transactions of the Japan Society for Aeronautical and Space Sciences, 2000, 43, 31-33.	0.4	5
192	Incipient separation on flared bodies at hypersonic speeds. Aeronautical Journal, 1999, 103, 405-414.	1.1	15
193	Surface thermography by laser-induced fluorescence for transient heat transfer measurements in high-speed flows. , 1999, , .		0
194	Control Effectiveness of a Jet-Slender Body Combination at Hypersonic Speeds. Journal of Spacecraft and Rockets, 1997, 34, 762-768.	1.3	37
195	Hypersonic effectiveness of slender lifting elliptic cones with and without strakes. , 1997, , .		3
196	Flow Diagnostics in Shock Wave-Boundary Layer Interaction Experiments in Hypersonic Flow. Applied Mechanics and Materials, 0, 660, 669-673.	0.2	1