
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chemistry, 2014, 16, 2156.	4.6	334
2	Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UVâ€Blocking Performance. Advanced Functional Materials, 2019, 29, 1806912.	7.8	211
3	Reduction of lignin color via one-step UV irradiation. Green Chemistry, 2016, 18, 695-699.	4.6	176
4	Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Conversion and Management, 2007, 48, 2433-2438.	4.4	166
5	Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresource Technology, 2013, 146, 478-484.	4.8	104
6	Corrosion and Scale Inhibition Properties of Sodium Lignosulfonate and Its Potential Application in Recirculating Cooling Water System. Industrial & Engineering Chemistry Research, 2006, 45, 5716-5721.	1.8	98
7	Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry. Journal of Industrial and Engineering Chemistry, 2015, 27, 192-200.	2.9	94
8	Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers, 2020, 12, 2471.	2.0	86
9	Encapsulating TiO ₂ in Lignin-Based Colloidal Spheres for High Sunscreen Performance and Weak Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 6234-6242.	3.2	77
10	A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating. Industrial & Engineering Chemistry Research, 2017, 56, 11133-11141.	1.8	76
11	Highly Resilient Lignin-Containing Polyurethane Foam. Industrial & Engineering Chemistry Research, 2019, 58, 496-504.	1.8	76
12	Preparation of Lignin-Based Superplasticizer by Graft Sulfonation and Investigation of the Dispersive Performance and Mechanism in a Cementitious System. Industrial & Engineering Chemistry Research, 2013, 52, 16101-16109.	1.8	74
13	In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent UV-Absorption Properties and Its Application in Polyurethane. ACS Sustainable Chemistry and Engineering, 2018, 6, 3696-3705.	3.2	74
14	Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Industrial & Engineering Chemistry Research, 2015, 54, 12025-12030.	1.8	73
15	Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustainable Chemistry and Engineering, 2015, 3, 3239-3244.	3.2	72
16	Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresource Technology, 2018, 249, 1-8.	4.8	71
17	Structure and Properties of Sodium Lignosulfonate with Different Molecular Weight Used as Dye Dispersant. Journal of Dispersion Science and Technology, 2015, 36, 532-539.	1.3	69
18	Evaluation of treated black liquor used as dispersant of concentrated coal–water slurry. Fuel, 2010, 89, 716-723.	3.4	68

#	Article	IF	CITATIONS
19	Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Developing Natural Sunscreens. Industrial & Engineering Chemistry Research, 2018, 57, 15740-15748.	1.8	67
20	Modulation of BrĄ̃nsted and Lewis Acid Centers for Ni <i>_x</i> Co _{3â``} <i>_x</i> O ₄ Spinel Catalysts: Towards Efficient Catalytic Conversion of Lignin. Advanced Functional Materials, 2022, 32, .	7.8	67
21	Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries. Green Chemistry, 2020, 22, 4321-4330.	4.6	64
22	Properties of Different Molecular Weight Sodium Lignosulfonate Fractions as Dispersant of Coalâ€Water Slurry. Journal of Dispersion Science and Technology, 2006, 27, 851-856.	1.3	59
23	Direct Construction of Catechol Lignin for Engineering Longâ€Acting Conductive, Adhesive, and UVâ€Blocking Hydrogel Bioelectronics. Small Methods, 2021, 5, e2001311.	4.6	59
24	Formation of Uniform Colloidal Spheres Based on Lignosulfonate, a Renewable Biomass Resource Recovered from Pulping Spent Liquor. ACS Sustainable Chemistry and Engineering, 2018, 6, 1379-1386.	3.2	55
25	Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 15966-15973.	3.2	54
26	Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Bioresource Technology, 2015, 185, 165-170.	4.8	53
27	Development and evaluation of polycarboxylic acid hyper-dispersant used to prepare high-concentrated coal–water slurry. Powder Technology, 2012, 229, 185-190.	2.1	49
28	Physicochemical Properties of Calcium Lignosulfonate with Different Molecular Weights as Dispersant in Aqueous Suspension. Journal of Dispersion Science and Technology, 2008, 29, 1296-1303.	1.3	48
29	Using recyclable pH-responsive lignin amphoteric surfactant to enhance the enzymatic hydrolysis of lignocelluloses. Green Chemistry, 2017, 19, 5479-5487.	4.6	48
30	Three-dimensional Porous Framework Lignin-Derived Carbon/ZnO Composite Fabricated by a Facile Electrostatic Self-Assembly Showing Good Stability for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 16419-16427.	3.2	45
31	Preparation and Evaluation of Carboxymethylated Lignin as Dispersant for Aqueous Graphite Suspension Using Turbiscan Lab Analyzer. Journal of Dispersion Science and Technology, 2013, 34, 644-650.	1.3	44
32	Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection. Green Chemistry, 2020, 22, 6357-6371.	4.6	43
33	Light Color Dihydroxybenzophenone Grafted Lignin with High UVA/UVB Absorbance Ratio for Efficient and Safe Natural Sunscreen. Industrial & Engineering Chemistry Research, 2020, 59, 17057-17068.	1.8	43
34	Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application. International Journal of Biological Macromolecules, 2020, 150, 371-379.	3.6	42
35	Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. Bioresource Technology, 2016, 216, 968-975.	4.8	40
36	Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy. Journal of Colloid and Interface Science, 2021, 591, 352-362.	5.0	39

#	Article	IF	CITATIONS
37	Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers. Polymers, 2018, 10, 1033.	2.0	38
38	Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect. Journal of Colloid and Interface Science, 2021, 583, 80-88.	5.0	38
39	Influence of sulfonated acetone–formaldehyde condensation used as dispersant on low rank coal–water slurry. Energy Conversion and Management, 2012, 64, 139-144.	4.4	36
40	Mo-Doped/Ni-supported ZnIn ₂ S ₄ -wrapped NiMoO ₄ S-scheme heterojunction photocatalytic reforming of lignin into hydrogen. Green Chemistry, 2022, 24, 2027-2035.	4.6	36
41	Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation. Journal of Industrial and Engineering Chemistry, 2020, 82, 220-227.	2.9	34
42	Near-Infrared-Activated Efficient Bacteria-Killing by Lignin-Based Copper Sulfide Nanocomposites with an Enhanced Photothermal Effect and Peroxidase-like Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 6479-6488.	3.2	34
43	Pristine lignin as a flame retardant in flexible PU foam. Green Chemistry, 2021, 23, 5972-5980.	4.6	33
44	Physicochemical properties of sodium lignosulfonates (NaLS) modified by laccase. Holzforschung, 2012, 66, 825-832.	0.9	32
45	The adsorption and dispersing mechanisms of sodium lignosulfonate on Al ₂ O ₃ particles in aqueous solution. Holzforschung, 2013, 67, 387-394.	0.9	31
46	Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresource Technology, 2014, 155, 418-421.	4.8	31
47	Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour. RSC Advances, 2015, 5, 2441-2448.	1.7	31
48	A light-colored hydroxypropyl sulfonated alkali lignin for utilization as a dye dispersant. Holzforschung, 2016, 70, 109-116.	0.9	31
49	Laccase and Xylanase Incubation Enhanced the Sulfomethylation Reactivity of Alkali Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 1248-1254.	3.2	30
50	Biorefinery Lignosulfonates from Sulfite-Pretreated Softwoods as Dispersant for Graphite. ACS Sustainable Chemistry and Engineering, 2016, 4, 2200-2205.	3.2	30
51	Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 694-703.	5.0	30
52	Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films. Journal of Colloid and Interface Science, 2021, 594, 316-325.	5.0	29
53	Whitening Sulfonated Alkali Lignin via H ₂ O ₂ /UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry and Engineering, 2018, 6, 1055-1060.	3.2	28
54	Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science and Engineering, 2019, 13, 59-69.	2.3	28

#	Article	IF	CITATIONS
55	Monodispersed Lignin Colloidal Spheres with Tailorable Sizes for Bioâ€Photonic Materials. Small, 2022, 18, e2200671.	5.2	28
56	Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Bioresource Technology, 2015, 193, 266-273.	4.8	27
57	Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline. Applied Surface Science, 2017, 426, 287-293.	3.1	26
58	High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. International Journal of Biological Macromolecules, 2020, 158, 430-442.	3.6	25
59	Study on Enhancing the Slurry Performance of Coal–Water Slurry Prepared with Low-Rank Coal. Journal of Dispersion Science and Technology, 2015, 36, 1247-1256.	1.3	24
60	Long-Acting Ultraviolet-Blocking Mechanism of Lignin: Generation and Transformation of Semiquinone Radicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5421-5429.	3.2	22
61	Preparation of Light-Colored Lignosulfonate Sunscreen Microcapsules with Strengthened UV-Blocking and Adhesion Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9381-9388.	3.2	22
62	Aggregation of sodium lignosulfonate above a critical temperature. Holzforschung, 2014, 68, 641-647.	0.9	21
63	Effect of Urea on the Enzymatic Hydrolysis of Lignocellulosic Substrate and Its Mechanism. Bioenergy Research, 2018, 11, 456-465.	2.2	21
64	Fabrication of High-Concentration Aqueous Graphene Suspensions Dispersed by Sodium Lignosulfonate and Its Mechanism. Journal of Physical Chemistry C, 2015, 119, 23221-23230.	1.5	20
65	Fabrication of a Lignin-Copper Sulfide-Incorporated PVA Hydrogel with Near-Infrared-Activated Photothermal/Photodynamic/Peroxidase-like Performance for Combating Bacteria and Biofilms. ACS Biomaterials Science and Engineering, 2022, 8, 560-569.	2.6	20
66	Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions. Journal of Polymer Research, 2015, 22, 1.	1.2	19
67	Nonconventional photoluminescence from sulfonated acetone–formaldehyde condensate with aggregation-enhanced emission. RSC Advances, 2016, 6, 47632-47636.	1.7	19
68	Effect of cationic surfactant cetyltrimethylammonium bromide on the enzymatic hydrolysis of cellulose. Cellulose, 2017, 24, 61-68.	2.4	19
69	Activation of Enzymatic Hydrolysis Lignin by NaOH/Urea Aqueous Solution for Enhancing Its Sulfomethylation Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 1120-1128.	3.2	19
70	Preparation of self-dispersed lignin-based drug-loaded material and its application in avermectin nano-formulation. International Journal of Biological Macromolecules, 2020, 151, 421-427.	3.6	19
71	Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Advances, 2014, 4, 53855-53863.	1.7	18
72	Molecular Structure of Sodium Lignosulfonate from Different Sources and their Properties as Dispersant of TiO ₂ Slurry. Journal of Dispersion Science and Technology, 2016, 37, 296-303.	1.3	18

#	Article	IF	CITATIONS
73	Preparation of a Low Reducing Effect Sulfonated Alkali Lignin and Application as Dye Dispersant. Polymers, 2018, 10, 982.	2.0	18
74	Mechanically strong and electrically stable polypyrrole paper using high molecular weight sulfonated alkaline lignin as a dispersant and dopant. Journal of Colloid and Interface Science, 2019, 556, 47-53.	5.0	18
75	Effects of Cationic Cetyltrimethylammonium Bromide on the Aggregation Behavior of Sodium Lignosulfonate (NaLS) in Concentrated Solutions and Preparation of Uniform Lignosulfonate-Based Colloidal Spheres. Journal of Agricultural and Food Chemistry, 2020, 68, 9451-9460.	2.4	18
76	Physicochemical Behavior of Sulphonated Acetone-Formaldehyde Resin and Naphthalene Sulfonate-Formaldehyde Condensate in Coal-Water Interface. Journal of Dispersion Science and Technology, 2009, 30, 353-360.	1.3	16
77	Rheological Behavior Investigation of Concentrated Coal-Water Suspension. Journal of Dispersion Science and Technology, 2010, 31, 838-843.	1.3	16
78	Preparation of slow release nanopesticide microspheres from benzoyl lignin. Holzforschung, 2018, 72, 599-607.	0.9	16
79	Lignin — a promising biomass resource. Tappi Journal, 2018, 17, 125-141.	0.2	15
80	Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. Bioresource Technology, 2017, 243, 1141-1148.	4.8	14
81	Insights into Gas-Exfoliation and the In-Situ Template Mechanism of Zinc Compound for Lignin-Derived Supercapacitive Porous Carbon. ACS Applied Energy Materials, 2021, 4, 13617-13626.	2.5	14
82	Multi-stage explosion of lignin: a new horizon for constructing defect-rich carbon towards advanced lithium ion storage. Green Chemistry, 2022, 24, 5941-5951.	4.6	14
83	Chemical modification of lignin assisted by microwave irradiation. Holzforschung, 2011, 65, .	0.9	13
84	Effects of concentration and temperature on the rheological behavior of concentrated sodium lignosulfonate (NaLS) solutions. Holzforschung, 2015, 69, 265-271.	0.9	13
85	Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover. Cellulose, 2017, 24, 669-676.	2.4	13
86	Effect of structure of technical lignin on the electrochemical performance of lignin-derived porous carbon from K ₂ CO ₃ activation. Holzforschung, 2020, 74, 293-302.	0.9	13
87	One-pot preparation of hydrophobic lignin/SiO2 nanoparticles and its reinforcing effect on HDPE. International Journal of Biological Macromolecules, 2021, 180, 523-532.	3.6	13
88	Aggregation and adsorption behaviors of carboxymethylated lignin (CML) in aqueous solution. Holzforschung, 2013, 67, 379-385.	0.9	11
89	Wood-inspired strategy to toughen transparent cellulose nanofibril films. Carbohydrate Polymers, 2021, 259, 117759.	5.1	11
90	Adsorption Characteristics of Naphthalene Sulfonate Formaldehyde Condensate with Different Molecular Weights. Journal of Dispersion Science and Technology, 2013, 34, 1092-1098.	1.3	10

#	Article	IF	CITATIONS
91	Biorefinery lignosulfonates as a dispersant for coal water slurry. Sustainable Chemical Processes, 2016, 4, .	2.3	9
92	A green approach for tunable fluorescent and superhydrophobic monodisperse polysilsesquioxane spheres. Journal of Colloid and Interface Science, 2020, 578, 484-490.	5.0	9
93	Enhancing enzymatic hydrolysis of crystalline cellulose and lignocellulose by adding long-chain fatty alcohols. Cellulose, 2014, 21, 3361-3369.	2.4	8
94	Characterization of the adsorption properties of a phosphorylated kraft lignin-based polymer at the solid/liquid interface by the QCM-D approach. Holzforschung, 2016, 70, 937-945.	0.9	8
95	Effect of Molecular Weight on the Reactivity and Dispersibility of Sulfomethylated Alkali Lignin Modified by Horseradish Peroxidase. ACS Sustainable Chemistry and Engineering, 2018, 6, 14197-14202.	3.2	8
96	Dynamic Surface Tension and Adsorption Kinetics of Sodium Lignosulfonate Aqueous Solutions. Journal of Dispersion Science and Technology, 2013, 34, 709-715.	1.3	7
97	Effects of Modified Sodium Lignosulfonate on Rheological Properties of Coal–Water Slurry with Low-Rank Coal. Journal of Dispersion Science and Technology, 2014, 35, 1675-1684.	1.3	7
98	Modified sodium lignosulfonates (NaLS) with straight chain alcohols and their aggregation behavior and adsorption characteristics on solid surfaces. Holzforschung, 2016, 70, 1023-1030.	0.9	6
99	Adsorption characteristics of carboxymethylated lignin at a hydrophobic solid/water interface. Iranian Polymer Journal (English Edition), 2014, 23, 47-52.	1.3	5
100	Effect of the Interfacial Agents with Different Types of Hydrophilic Functional Groups on the Rheological Properties of Coal-Water Slurry. Journal of Dispersion Science and Technology, 2013, 34, 1646-1655.	1.3	4
101	Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification. Applied Biochemistry and Biotechnology, 2020, 191, 981-995.	1.4	4
102	In situ synthesis of "brick and mortar―type lignin-derived carbon/TiO2 composite with a remarkable photocatalytic performance. Journal of Industrial and Engineering Chemistry, 2021, 97, 216-225.	2.9	4
103	Transparent and flame retardant vinylidene chloride <scp>â€m</scp> ethyl acrylate hybrid films with enhanced water vapor barrier, thermostability, and antiâ€glare properties. Journal of Applied Polymer Science, 2021, 138, 50160.	1.3	2