Almudena Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781388/publications.pdf

Version: 2024-02-01

687220 887953 19 686 13 17 citations h-index g-index papers 20 20 20 1371 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Naked (N) mutant mice carry a nonsense mutation in the homeobox of <i>Hoxc13</i> . Experimental Dermatology, 2022, 31, 330-340.	1.4	1
2	The structure and function of the mouse tyrosinase locus. Pigment Cell and Melanoma Research, 2021, 34, 212-221.	1.5	19
3	HPS11 and OCA8: Two new types of albinism associated with mutations in <i>BLOC1S5</i> and <i>DCT</i> genes. Pigment Cell and Melanoma Research, 2021, 34, 10-12.	1.5	15
4	Genetics of nonâ€syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell and Melanoma Research, 2021, 34, 786-799.	1.5	25
5	Diverse human VH antibody fragments with bio-therapeutic properties from the Crescendo Mouse. New Biotechnology, 2020, 55, 65-76.	2.4	18
6	Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression. Scientific Reports, 2020, 10, 15494.	1.6	5
7	Alu retrotransposons modulate Nanog expression through dynamic changes in regional chromatin conformation via aryl hydrocarbon receptor. Epigenetics and Chromatin, 2020, 13, 15.	1.8	12
8	Simple Protocol for Generating and Genotyping Genomeâ€Edited Mice With CRISPR as9 Reagents. Current Protocols in Mouse Biology, 2020, 10, e69.	1.2	18
9	A history of genome editing in mammals. Mammalian Genome, 2017, 28, 237-246.	1.0	43
10	Concepts and tools for gene editing. Reproduction, Fertility and Development, 2017, 29, 1.	0.1	6
11	Dissecting the role of epidermal growth factor receptor catalytic activity during liver regeneration and hepatocarcinogenesis. Hepatology, 2016, 63, 604-619.	3.6	47
12	Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR–Cas9-mediated mutagenesis. Nucleic Acids Research, 2015, 43, 4855-4867.	6.5	69
13	Blastocyst genotyping for quality control of mouse mutant archives: an ethical and economical approach. Transgenic Research, 2015, 24, 921-927.	1.3	19
14	Increasing the complexity: new genes and new types of albinism. Pigment Cell and Melanoma Research, 2014, 27, 11-18.	1.5	179
15	INSULATORS AND CHROMOSOME-TYPE VECTORS FOR GENE TRANSFER. Reproduction, Fertility and Development, 2013, 25, 318.	0.1	0
16	An insulator embedded in the chicken \hat{l}_{\pm} -globin locus regulates chromatin domain configuration and differential gene expression. Nucleic Acids Research, 2011, 39, 89-103.	6.5	29
17	Genomic Insulators in Transgenic Animals. , 2011, , 1-10.		0
18	Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. Briefings in Functional Genomics & Proteomics, 2009, 8, 283-296.	3.8	26

#	Article	IF	CITATIONS
19	Zebrafish enhancer detection (ZED) vector: A new tool to facilitate transgenesis and the functional analysis of <i>ci>< i>analysis of <i>ci>< i>analysis of < analysis of < analysi</i></i>	0.8	153