
Marie-Louise Montandon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personality Impact on Alzheimer's Disease — Signature and Vascular Imaging Markers: A PET-MRI Study. Journal of Alzheimer's Disease, 2022, 85, 1807-1817.	1.2	5
2	Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers. European Radiology, 2022, 32, 7833-7842.	2.3	4
3	Cognitive and Emotional Determinants of Automatic Perspective Taking in Healthy Adults. Frontiers in Psychology, 2022, 13, 883929.	1.1	1
4	Identification of hippocampal cortical microinfarcts on postmortem 3-T magnetic resonance imaging. Neuroradiology, 2021, 63, 1569-1573.	1.1	1
5	Prediction of Subtle Cognitive Decline in Normal Aging: Added Value of Quantitative MRI and PET Imaging. Frontiers in Aging Neuroscience, 2021, 13, 664224.	1.7	0
6	Determinants of Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study in a Community-based Cohort. Current Alzheimer Research, 2021, 18, 482-491.	0.7	3
7	Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. Neurobiology of Aging, 2020, 87, 108-114.	1.5	9
8	Medial temporal lobe volume is associated with neuronal loss but not with hippocampal microinfarcts despite their high frequency in aging brains. Neurobiology of Aging, 2020, 95, 9-14.	1.5	1
9	PET amyloid in normal aging: direct comparison of visual and automatic processing methods. Scientific Reports, 2020, 10, 16665.	1.6	8
10	Microbleeds and Medial Temporal Atrophy Determine Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study. Journal of Alzheimer's Disease, 2020, 77, 1431-1442.	1.2	10
11	Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. Neurobiology of Aging, 2020, 89, 24-31.	1.5	11
12	Personality Factors' Impact on the Structural Integrity of Mentalizing Network in Old Age: A Combined PET-MRI Study. Frontiers in Psychiatry, 2020, 11, 552037.	1.3	4
13	MRI detection of cerebral microbleeds: size matters. Neuroradiology, 2019, 61, 1209-1213.	1.1	16
14	Gray Matter Densities in Limbic Areas and APOE4 Independently Predict Cognitive Decline in Normal Brain Aging. Frontiers in Aging Neuroscience, 2019, 11, 157.	1.7	16
15	Hippocampal Volume Loss, Brain Amyloid Accumulation, and APOE Status in Cognitively Intact Elderly Subjects. Neurodegenerative Diseases, 2019, 19, 139-147.	0.8	10
16	Amyloid Load, Hippocampal Volume Loss, and Diffusion Tensor Imaging Changes in Early Phases of Brain Aging. Frontiers in Neuroscience, 2019, 13, 1228.	1.4	9
17	Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and MRI Parameters in Old Age. Nutrients, 2018, 10, 1391.	1.7	36
18	Caffeine impact on working memory-related network activation patterns in early stages of cognitive decline. Neuroradiology, 2017, 59, 387-395.	1.1	10

#	Article	IF	CITATIONS
19	<i>APOE</i> * <i>E4</i> Is Associated with Gray Matter Loss in the Posterior Cingulate Cortex in Healthy Elderly Controls Subsequently Developing Subtle Cognitive Decline. American Journal of Neuroradiology, 2017, 38, 1335-1342.	1.2	25
20	Clinicoradiologic Correlations of Cerebral Microbleeds in Advanced Age. American Journal of Neuroradiology, 2017, 38, 39-45.	1.2	15
21	Decreased Fronto-Parietal and Increased Default Mode Network Activation is Associated with Subtle Cognitive Deficits in Elderly Controls. NeuroSignals, 2017, 25, 127-138.	0.5	25
22	Arterial Spin Labeling May Contribute to the Prediction of Cognitive Deterioration in Healthy Elderly Individuals. Radiology, 2015, 274, 490-499.	3.6	118
23	Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment. Neuroscience, 2015, 310, 410-421.	1.1	4
24	Structure-Function–Based Quantitative Brain Image Analysis. PET Clinics, 2010, 5, 155-168.	1.5	9
25	The Clinical Role of Fusion Imaging Using PET, CT, and MR Imaging. PET Clinics, 2008, 3, 275-291.	1.5	14
26	Scatter Compensation Techniques inÂPET. PET Clinics, 2007, 2, 219-234.	1.5	64
27	Advances in Attenuation Correction Techniques in PET. PET Clinics, 2007, 2, 191-217.	1.5	42
28	Quantitative analysis of template-based attenuation compensation in 3D brain PET. Computerized Medical Imaging and Graphics, 2007, 31, 28-38.	3.5	14
29	Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. NeuroImage, 2005, 25, 278-286.	2.1	74
30	Assessment of the impact of model-based scatter correction on [18F]-FDG 3D brain PET in healthy subjects using statistical parametric mapping. NeuroImage, 2003, 20, 1848-1856.	2.1	18