Satyasheel Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Organic Chemistry Frontiers, 2022, 9, 1742-1775.	4.5	23
2	Rhodium(<scp>iii</scp>)-catalyzed synthesis of 3-trifluoromethylindanones from <i>N</i> -methoxybenzamides <i>via</i> C–H activation and Claisen/retro-Claisen reaction. Organic Chemistry Frontiers, 2020, 7, 1512-1519.	4.5	14
3	Regioselective C–H alkylation and alkenylation at the C5 position of 2-amino-1,4-naphthoquinones with maleimides under Rh(<scp>iii</scp>) catalysis. Organic Chemistry Frontiers, 2019, 6, 2441-2446.	4.5	28
4	Rh(III)-Catalyzed [3 + 2] Annulation via C–H Activation: Direct Access to Trifluoromethyl-Substituted Indenamines and Aminoindanes. Organic Letters, 2019, 21, 2763-2767.	4.6	28
5	Regioselective indole C2-alkylation using β-CF ₃ -substituted enones under redox neutral Rh(<scp>iii</scp>) catalysis. Organic Chemistry Frontiers, 2018, 5, 3133-3137.	4.5	28
6	Benzophenone: a ubiquitous scaffold in medicinal chemistry. MedChemComm, 2018, 9, 1803-1817.	3.4	60
7	Synthesis of Phthalides through Tandem Rhodiumâ€Catalyzed C–H Olefination and Annulation of Benzamides. European Journal of Organic Chemistry, 2016, 2016, 3076-3083.	2.4	7
8	Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration. Organic Letters, 2016, 18, 2568-2571.	4.6	68
9	Trifluoromethylallylation of Heterocyclic C–H Bonds with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 4771-4778.	3.2	31
10	Site‧elective C–H Amidation of Azobenzenes with Dioxazolones under Rhodium Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4976-4980.	2.4	35
11	Rh(III)-Catalyzed C–H Functionalization of Indolines with Readily Accessible Amidating Reagent: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2016, 81, 9878-9885.	3.2	84
12	Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2016, 358, 2714-2720.	4.3	56
13	Rhodium(III)-Catalyzed C(sp ³)–H Alkylation of 8-Methylquinolines with Maleimides. Organic Letters, 2016, 18, 4666-4669.	4.6	95
14	Rhodium-Catalyzed Vinylic C-H Functionalization of Enol Carbamates with Maleimides. European Journal of Organic Chemistry, 2016, 2016, 3611-3618.	2.4	32
15	Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 2243-2251.	3.2	38
16	Access to 3-Acyl-(2 <i>H</i>)-indazoles via Rh(III)-Catalyzed C–H Addition and Cyclization of Azobenzenes with α-Keto Aldehydes. Organic Letters, 2016, 18, 232-235.	4.6	78
17	Discovery and SAR of N-(1-((substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 112 Td (piperidin-4-yl)n	1ethyl)-3-m	nethoxypiperid
- 1/	receptor 4 agonist as a potent prokinetic agent. European Journal of Medicinal Chemistry, 2016, 109, 75-88.	- 0.0	
18	Rh(III)-Catalyzed Direct Coupling of Azobenzenes with \hat{I}_{\pm} -Diazo Esters: Facile Synthesis of	4.6	108

Cinnolin-3(2<i>H</i>)-ones. Organic Letters, 2015, 17, 2852-2855.

SATYASHEEL SHARMA

#	Article	IF	CITATIONS
19	Mild Rh(III)-Catalyzed C7-Allylation of Indolines with Allylic Carbonates. Journal of Organic Chemistry, 2015, 80, 1818-1827.	3.2	76
20	Direct and Siteâ€Selective Palladiumâ€Catalyzed Câ€7 Acylation of Indolines with Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 594-600.	4.3	63
21	Rh(III)-Catalyzed C–H Amidation of Indoles with Isocyanates. Journal of Organic Chemistry, 2015, 80, 7243-7250.	3.2	42
22	Synthesis of N-Sulfonylamidated and Amidated Azobenzenes under Rhodium Catalysis. Journal of Organic Chemistry, 2015, 80, 8026-8035.	3.2	32
23	Rhodium-catalyzed mild and selective C–H allylation of indolines and indoles with 4-vinyl-1,3-dioxolan-2-one: facile access to indolic scaffolds with an allylic alcohol moiety. Tetrahedron, 2015, 71, 2435-2441.	1.9	49
24	Rhodium(III) atalyzed Selective CH Cyanation of Indolines and Indoles with an Easily Accessible Cyano Source. Advanced Synthesis and Catalysis, 2015, 357, 1293-1298.	4.3	95
25	Direct C–H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis. Chemical Communications, 2015, 51, 17229-17232.	4.1	106
26	Rhodium-Catalyzed C–H Alkylation of Indolines with Allylic Alcohols: Direct Access to β-Aryl Carbonyl Compounds. Journal of Organic Chemistry, 2015, 80, 11092-11099.	3.2	63
27	Transition-Metal-Catalyzed Oxidative and Decarboxylative Acylations through sp2 C-H Bond Activation. Current Organic Chemistry, 2015, 20, 471-511.	1.6	24
28	Copper-Catalyzed Oxidative C–O Bond Formation of 2-Acyl Phenols and 1,3-Dicarbonyl Compounds with Ethers: Direct Access to Phenol Esters and Enol Esters. Journal of Organic Chemistry, 2014, 79, 4735-4742.	3.2	24
29	Direct access to isoindolines through tandem Rh(<scp>iii</scp>)-catalyzed alkenylation and cyclization of N-benzyltriflamides. Chemical Communications, 2014, 50, 2350-2352.	4.1	51
30	Pd-Catalyzed Oxidative Coupling of Arene C–H Bonds with Benzylic Ethers as Acyl Equivalents. Journal of Organic Chemistry, 2014, 79, 275-284.	3.2	50
31	Direct allylation of aromatic and $\hat{l}\pm,\hat{l}^2$ -unsaturated carboxamides under ruthenium catalysis. Chemical Communications, 2014, 50, 11303.	4.1	80
32	Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2014, 79, 9262-9271.	3.2	61
33	Rh-catalyzed oxidative C2-alkenylation of indoles with alkynes: unexpected cleavage of directing group. Tetrahedron Letters, 2014, 55, 3104-3107.	1.4	32
34	Decarboxylative acylation of indolines with α-keto acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles. Chemical Communications, 2014, 50, 14249-14252.	4.1	109
35	Rh-catalyzed oxidative C–C bond formation and C–N bond cleavage: direct access to C2-olefinated free (NH)-indoles and pyrroles. Organic and Biomolecular Chemistry, 2014, 12, 1703-1706.	2.8	51
36	Rh(III)-Catalyzed Oxidative Coupling of 1,2-Disubstituted Arylhydrazines and Olefins: A New Strategy for 2,3-Dihydro-1H-Indazoles. Organic Letters, 2014, 16, 2494-2497.	4.6	54

SATYASHEEL SHARMA

#	Article	IF	CITATIONS
37	Cu(II)-catalyzed oxidative esterification of 2-carbonyl substituted phenols from the alcohol oxidation level. Tetrahedron, 2013, 69, 9391-9397.	1.9	19
38	Palladium atalyzed Direct Acylation of Ketoximes and Aldoximes from the Alcohol Oxidation Level through C–H Bond Activation. European Journal of Organic Chemistry, 2013, 2013, 6656-6665.	2.4	33
39	Pd(ii)-catalyzed direct C–H acylation of N-Boc hydrazones with aldehydes: one-pot synthesis of 1,2-diacylbenzenes. Organic and Biomolecular Chemistry, 2013, 11, 7869.	2.8	28
40	Synthesis and C2-functionalization of indoles with allylic acetates under rhodium catalysis. Organic and Biomolecular Chemistry, 2013, 11, 7427.	2.8	44
41	Palladium-catalyzed decarboxylative acylation of O-methyl ketoximes with α-keto acids. Chemical Communications, 2013, 49, 925-927.	4.1	127
42	Palladium atalyzed Decarboxylative Acylation of <i>O</i> â€Phenyl Carbamates with αâ€Oxocarboxylic Acids at Room Temperature. Advanced Synthesis and Catalysis, 2013, 355, 667-672.	4.3	57
43	Pd(ii)-catalyzed decarboxylative acylation of phenylacetamides with α-oxocarboxylic acids via C–H bond activation. Chemical Communications, 2013, 49, 1654.	4.1	120
44	Direct acylation of N-benzyltriflamides from the alcohol oxidation level via palladium-catalyzed C–H bond activation. Organic and Biomolecular Chemistry, 2013, 11, 2766.	2.8	48
45	Palladium atalyzed Oxidative Acylation of <i>N</i> â€Benzyltriflamides with Aldehydes <i>via</i> CH Bond Activation. Advanced Synthesis and Catalysis, 2013, 355, 332-336.	4.3	28
46	Pd-catalyzed oxidative acylation of 2-phenoxypyridines withÂalcohols via C–H bond activation. Tetrahedron, 2013, 69, 6552-6559.	1.9	33
47	Synthesis of <i>meso-</i> substituted dihydro-1,3-oxazinoporphyrins. Beilstein Journal of Organic Chemistry, 2013, 9, 496-502.	2.2	11
48	Asymmetric Synthesis of (+)-trans-Aerangis Lactone. Bulletin of the Korean Chemical Society, 2013, 34, 75-78.	1.9	7
49	Tandem Rh(III)-Catalyzed Oxidative Acylation of Secondary Benzamides with Aldehydes and Intramolecular Cyclization: The Direct Synthesis of 3-Hydroxyisoindolin-1-ones. Organic Letters, 2012, 14, 906-909.	4.6	145
50	Novel 5-benzazolyl-10,15,20-triphenylporphyrins and β,meso-benzoxazolyl-bridged porphyrin dyads: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2012, 92, 1241-1249.	3.7	28
51	An efficient synthetic approach to novel nickel(II) 2â€benzazoloâ€5,10,15,20â€ŧetraphenylporphyrins. Journal of Heterocyclic Chemistry, 2012, 49, 88-92.	2.6	13
52	La(OTf)3-catalyzed one-pot synthesis of meso-substituted porphyrinic thiazolidinones. Monatshefte Fļr Chemie, 2012, 143, 309-316.	1.8	14
53	Synthesis and spectroscopic properties of meso-substituted quinoxalinoporphyrins. New Journal of Chemistry, 2011, 35, 1630.	2.8	12
54	An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. European Journal of Medicinal Chemistry, 2010, 45, 1502-1507.	5.5	130