Franziska Turck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780933/publications.pdf

Version: 2024-02-01

59 papers

6,170 citations

126708 33 h-index 55 g-index

63 all docs

63
docs citations

times ranked

63

7078 citing authors

#	Article	IF	CITATIONS
1	Quality control and evaluation of plant epigenomics data. Plant Cell, 2022, 34, 503-513.	3.1	13
2	Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. Plant Cell, 2021, 33, 475-491.	3.1	23
3	Information integration and decision making in flowering time control. PLoS ONE, 2020, 15, e0239417.	1.1	3
4	The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2). PLoS Genetics, 2020, 16, e1008681.	1.5	22
5	Title is missing!. , 2020, 16, e1008681.		o
6	Title is missing!. , 2020, 16, e1008681.		0
7	Title is missing!. , 2020, 16, e1008681.		О
8	Title is missing!. , 2020, 16, e1008681.		0
9	Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thaliana. Nature Plants, 2019, 5, 300-307.	4.7	44
10	Telobox motifs recruit CLF/SWN–PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nature Genetics, 2018, 50, 638-644.	9.4	123
11	Molekulare Mechanismen der Datenintegration und Entscheidung zur Einleitung der Reproduktiven Phase inÂPflanzen. Lecture Notes in Bioengineering, 2018, , 331-339.	0.3	О
12	AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal <i>Lotus japonicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9239-E9246.	3.3	63
13	Plant H3K27me3 has finally found its readers. Nature Genetics, 2018, 50, 1206-1208.	9.4	5
14	Ctf4-related protein recruits LHP1-PRC2 to maintain H3K27me3 levels in dividing cells in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4833-4838.	3.3	36
15	H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity. Genome Biology, 2017, 18, 69.	3.8	71
16	The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant Physiology, 2017, 173, 627-641.	2.3	38
17	Meta-analysis of Genome-Wide Chromatin Data. Methods in Molecular Biology, 2017, 1456, 33-50.	0.4	2
18	Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biology, 2017, 18, 137.	3.8	134

#	Article	IF	Citations
19	The age of multiplexity: recruitment and interactions of Polycomb complexes in plants. Current Opinion in Plant Biology, 2016, 29, 169-178.	3.5	79
20	Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell, 2016, 28, 87-101.	3.1	67
21	Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biology, 2015, 16, 192.	3.8	50
22	The Arabidopsis DNA Polymerase \hat{l} Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering. PLoS Genetics, 2015, 11, e1004975.	1.5	36
23	Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genetics, 2015, 11, e1005660.	1.5	68
24	Elevated Levels of MYB30 in the Phloem Accelerate Flowering in Arabidopsis through the Regulation of FLOWERING LOCUS T. PLoS ONE, 2014, 9, e89799.	1.1	30
25	Post-fertilization expression of FLOWERING LOCUS T suppresses reproductive reversion. Frontiers in Plant Science, 2014, 5, 164.	1.7	30
26	<i>miR824-</i> Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 2024-2037.	3.1	112
27	NATURAL VARIATION IN EPIGENETIC GENE REGULATION AND ITS EFFECTS ON PLANT DEVELOPMENTAL TRAITS. Evolution; International Journal of Organic Evolution, 2014, 68, 620-631.	1.1	38
28	Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nature Communications, 2014, 5, 4558.	5.8	93
29	VAL- and AtBMI1-Mediated H2Aub Initiate the Switch from Embryonic to Postgerminative Growth in Arabidopsis. Current Biology, 2013, 23, 1324-1329.	1.8	172
30	ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene <i>NCED3</i> in <i>Arabidopsis thaliana</i> FEBS Open Bio, 2013, 3, 321-327.	1.0	182
31	Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology, 2013, 31, 325-330.	9.4	149
32	Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis. New Phytologist, 2013, 199, 843-857.	3.5	44
33	Epigenetic Control of Flowering Time. Signaling and Communication in Plants, 2013, , 77-105.	0.5	3
34	<i>DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4</i> controls leaf margin architecture in <i>Arabidopsis thaliana</i> Development (Cambridge), 2012, 139, 2566-2575.	1.2	28
35	Fast Isogenic Mapping-by-Sequencing of Ethyl Methanesulfonate-Induced Mutant Bulks Â. Plant Physiology, 2012, 160, 591-600.	2.3	119
36	Genome-wide Analysis of Cis-regulatory Divergence between Species in the Arabidopsis Genus. Molecular Biology and Evolution, 2012, 29, 3385-3395.	3.5	34

#	Article	IF	Citations
37	Widespread Interspecific Divergence in Cis-Regulation of Transposable Elements in the Arabidopsis Genus. Molecular Biology and Evolution, 2012, 29, 1081-1091.	3.5	29
38	Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements. Genome Biology, 2012, 13, R117.	13.9	34
39	When Vernalization Makes Sense. Science, 2011, 331, 36-37.	6.0	17
40	Tissue-Specific Expression of <i>FLOWERING LOCUS T</i> in <i>Arabidopsis</i> ls Maintained Independently of Polycomb Group Protein Repression Â. Plant Cell, 2011, 23, 3204-3214.	3.1	70
41	Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE, 2011, 6, e17997.	1.1	50
42	Speeding Cis-Trans Regulation Discovery by Phylogenomic Analyses Coupled with Screenings of an Arrayed Library of Arabidopsis Transcription Factors. PLoS ONE, 2011, 6, e21524.	1.1	78
43	<i>ci>cis</i> -Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of <i>FLOWERING LOCUS T</i> i>in <i>Arabidopsis</i> i>ÂÂ. Plant Cell, 2010, 22, 1425-1440.	3.1	274
44	Genome-Wide Mapping of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Microarray Hybridization (ChIP-chip). Part A: ChIP-chip Molecular Methods. Methods in Molecular Biology, 2010, 631, 139-160.	0.4	29
45	Genome-Wide Mapping of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Microarray Hybridization (ChIP-chip). Part B: ChIP-chip Data Analysis. Methods in Molecular Biology, 2010, 631, 161-184.	0.4	9
46	Metaanalysis of ChIP-chip Data. Methods in Molecular Biology, 2010, 631, 185-207.	0.4	2
47	Control of perennial flowering and perenniality in Arabis alpina, a relative of Arabidopsis thaliana. Comparative Biochemistry and Physiology Part A, Molecular & Enp; Integrative Physiology, 2009, 153, S195-S196.	0.8	2
48	Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant Journal, 2009, 60, 268-279.	2.8	156
49	PEP1 regulates perennial flowering in Arabis alpina. Nature, 2009, 459, 423-427.	13.7	325
50	From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2009, 2, 628-642.	3.9	75
51	Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annual Review of Plant Biology, 2008, 59, 573-594.	8.6	889
52	The impact of chromatin regulation on the floral transition. Seminars in Cell and Developmental Biology, 2008, 19, 560-573.	2.3	69
53	Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genetics, 2007, 3, e86.	1.5	537
54	CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. Plant Cell, 2006, 18, 2971-2984.	3.1	512

#	Article	IF	CITATIONS
55	The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes and Development, 2006, 20, 898-912.	2.7	744
56	Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genetics, 2005, preprint, e86.	1.5	2
57	Stimulus-Dependent, Promoter-Specific Binding of Transcription Factor WRKY1 to Its Native Promoter and the Defense-Related Gene PcPR1-1 in Parsley[W]. Plant Cell, 2004, 16, 2573-2585.	3.1	180
58	Phytohormones Participate in an S6 Kinase Signal Transduction Pathway in Arabidopsis. Plant Physiology, 2004, 134, 1527-1535.	2.3	106
59	A Heat-Sensitive Arabidopsis thaliana Kinase Substitutes for Human p70 s6k Function In Vivo. Molecular and Cellular Biology, 1998, 18, 2038-2044.	1.1	66