Michelle Gehringer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780771/publications.pdf

Version: 2024-02-01

29 papers 1,623 citations

394421 19 h-index 28 g-index

34 all docs

34 docs citations

34 times ranked 1920 citing authors

#	Article	lF	CITATIONS
1	Atmospheric CO2 availability induces varying responses in net photosynthesis, toxin production and N2 fixation rates in heterocystous filamentous Cyanobacteria (Nostoc and Nodularia). Aquatic Sciences, 2021, 83, 1.	1.5	4
2	Diurnal Fe(II)/Fe(III) cycling and enhanced O2 production in a simulated Archean marine oxygen oasis. Nature Communications, 2021, 12, 2069.	12.8	6
3	How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fýrth, Germany. Biogeosciences, 2021, 18, 4535-4548.	3.3	1
4	Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats. Frontiers in Microbiology, 2021, 12, 667944.	3.5	4
5	A low-cost automized anaerobic chamber for long-term growth experiments and sample handling. HardwareX, 2021, 10, e00237.	2.2	2
6	Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology, 2020, 18, 152-166.	2.4	9
7	An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean. Geobiology, 2019, 17, 343-359.	2.4	18
8	Global cellular responses to \hat{l}^2 -methyl-amino-l-alanine (BMAA) by olfactory ensheathing glial cells (OEC). Toxicon, 2015, 99, 136-145.	1.6	15
9	Climate change and regulation of hepatotoxin production in Cyanobacteria. FEMS Microbiology Ecology, 2014, 88, 1-25.	2.7	39
10	Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
11	Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Scientific Reports, 2013, 3, 1482.	3.3	59
12	Excitotoxic potential of the cyanotoxin \hat{l}^2 -methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon, 2012, 60, 1159-1165.	1.6	74
13	Nodularin, a cyanobacterial toxin, is synthesized <i>in planta</i> by symbiotic <i>Nostoc</i> sp ISME Journal, 2012, 6, 1834-1847.	9.8	75
14	Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils. FEMS Microbiology Ecology, 2012, 80, 204-215.	2.7	25
15	A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon, 2011, 57, 546-554.	1.6	54
16	How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection?. Journal of Microbiological Methods, 2011, 85, 1-8.	1.6	49
17	Does Î \pm -Amino-Î 2 -methylaminopropionic Acid (BMAA) Play a Role in Neurodegeneration?. International Journal of Environmental Research and Public Health, 2011, 8, 3728-3746.	2.6	85
18	Host Selection of Symbiotic Cyanobacteria in 31 Species of the Australian Cycad Genus: <i>Macrozamia</i> (Zamiaceae). Molecular Plant-Microbe Interactions, 2010, 23, 811-822.	2.6	49

#	Article	IF	CITATIONS
19	Medium N:P Ratios and Specific Growth Rate ComodulateMicrocystin and Protein Content in Microcystis aeruginosa PCC7806 and M. aeruginosa UV027. Microbial Ecology, 2005, 49, 468-473.	2.8	110
20	Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environmental Toxicology, 2005, 20, 257-262.	4.0	99
21	Genetic Variation of the Bloom-Forming Cyanobacterium Microcystis aeruginosa within and among Lakes: Implications for Harmful Algal Blooms. Applied and Environmental Microbiology, 2005, 71, 6126-6133.	3.1	123
22	Comparison of the structure of key variants of microcystin to vasopressin. Environmental Toxicology and Pharmacology, 2005, 19, 297-303.	4.0	10
23	An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. International Journal of Biochemistry and Cell Biology, 2004, 36, 931-941.	2.8	119
24	The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells. Toxicon, 2004, 43, 85-92.	1.6	100
25	The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice Toxicon, 2004, 43, 251-254.	1.6	63
26	Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Letters, 2004, 557, 1-8.	2.8	244
27	An investigation of the role of vitamin E in the protection of mice against microcystin toxicity. Environmental Toxicology, 2003, 18, 142-148.	4.0	49
28	An investigation into the effect of selenium supplementation on microcystin hepatotoxicity. Toxicon, 2003, 41, 451-458.	1.6	51
29	The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon, 2003, 41, 871-876.	1.6	75