JoaquÃ-n Barreiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780636/publications.pdf Version: 2024-02-01

ΙολομΑλι Βλαβειρο

#	Article	IF	CITATIONS
1	Influence of 17-4ÂPH stainless steel powder recycling on properties of SLM additive manufactured parts. Journal of Materials Research and Technology, 2022, 16, 1647-1658.	5.8	27
2	Laser line scanner aptitude for the measurement of Selective Laser Melting parts. Optics and Lasers in Engineering, 2021, 138, 106406.	3.8	10
3	Laser Defocusing Effect on the Microstructure and Defects of 17-4PH Parts Additively Manufactured by SLM at a Low Energy Input. Metals, 2021, 11, 588.	2.3	14
4	Comparative Study on Microstructure and Corrosion Resistance of Al-Si Alloy Cast from Sand Mold and Binder Jetting Mold. Metals, 2021, 11, 1421.	2.3	9
5	Influence of printing conditions in Binder Jetting on the resin infiltration post-processing. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012041.	0.6	2
6	Evaluation of the influence of post-processing on the optical inspection accuracy of additively manufactured parts. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012062.	0.6	0
7	Characterisation of 17-4PH metallic powder recycling to optimise the performance of the selective laser melting process. Journal of Materials Research and Technology, 2020, 9, 1273-1285.	5.8	22
8	Heat treatments for improved quality binder jetted molds for casting aluminum alloys. Additive Manufacturing, 2020, 36, 101524.	3.0	10
9	Towards Functional Parts by Binder Jetting Calcium-Sulphate with Thermal Treatment Post-Processing. Materials, 2020, 13, 3818.	2.9	5
10	Application of Vacuum Techniques in Shell Moulds Produced by Additive Manufacturing. Metals, 2020, 10, 1090.	2.3	3
11	Analysis of Modern Optical Inspection Systems for Parts Manufactured by Selective Laser Melting. Sensors, 2020, 20, 3202.	3.8	7
12	Feasibility of Calcium Sulfate Moulds Made by Inkjet 3D Printing for Rapid Casting of Aluminium Alloys. Metals, 2020, 10, 802.	2.3	6
13	Metrological evaluation of laser scanner integrated with measuring arm using optical feature-based gauge. Optics and Lasers in Engineering, 2019, 121, 120-132.	3.8	14
14	Comparative Study of Aluminum Alloy Casting obtained by Sand Casting Method and Additive Manufacturing Technology. Procedia Manufacturing, 2019, 41, 682-689.	1.9	8
15	Analysis of microstructure and defects in 17-4 PH stainless steel sample manufactured by Selective Laser Melting. Procedia Manufacturing, 2019, 41, 66-73.	1.9	17
16	Knowledge base model for automatic probe orientation and configuration planning with CMMs. Robotics and Computer-Integrated Manufacturing, 2018, 49, 285-300.	9.9	10
17	New procedure for qualification of structured light 3D scanners using an optical feature-based gauge. Optics and Lasers in Engineering, 2018, 110, 193-206.	3.8	34
18	Characterization of Materials Used in 3D-Printing Technology with Different Analysis Techniques. Annals of DAAAM & Proceedings, 2018, , 0947-0954.	0.1	4

JoaquÃn Barreiro

#	Article	IF	CITATIONS
19	Nozzle design for combined use of MQL and cryogenic gas in machining. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 87-95.	4.9	97
20	TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 2017, 246, 144-157.	6.3	15
21	Metrological evaluation of Structured Light 3D scanning system with an optical feature-based gauge. Procedia Manufacturing, 2017, 13, 526-533.	1.9	5
22	Behaviour of infiltrating materials on Calcium Sulphate hemihydrate parts made by 3D printing. Procedia Manufacturing, 2017, 13, 848-855.	1.9	5
23	DESARROLLO Y ENSAYO DE UN AMORTIGUADOR DE MASAS SINTONIZADAS PARA SISTEMAS DE CATENARIA RIGIDA. Dyna (Spain), 2017, 92, 680-687.	0.2	3
24	Aplicación de la metodologÃa CTMTC para evaluación formativa del trabajo grupal en ingenierÃa de fabricación. Revista Infancia Educación Y Aprendizaje, 2017, 3, 499.	0.1	2
25	Motivación e implicación de los estudiantes en el proceso de evaluación formativa realizando trabajo en grupo en el aula. Revista Infancia Educación Y Aprendizaje, 2017, 3, 180.	0.1	0
26	Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. Journal of Cleaner Production, 2016, 139, 440-449.	9.3	238
27	Testing coordinate measuring arms with a geometric feature-based gauge:in situfield trials. Measurement Science and Technology, 2016, 27, 055003.	2.6	7
28	A cryo lubri-coolant approach for finish milling of aeronautical hard-to-cut materials. International Journal of Mechatronics and Manufacturing Systems, 2016, 9, 370.	0.1	5
29	Uncertainties on CMMs by Applying a Model of Corrections Based on a Global Metric, Monte Carlo and Neural Network Methods. Procedia Engineering, 2015, 132, 796-803.	1.2	2
30	Design of a TCM System Based on Vibration Signal for Metal Turning Processes. Procedia Engineering, 2015, 132, 405-412.	1.2	11
31	Cryogenic Hard Turning of ASP23 Steel Using Carbon Dioxide. Procedia Engineering, 2015, 132, 486-491.	1.2	28
32	aZIBO Shape Descriptor for Monitoring Tool Wear in Milling. Procedia Engineering, 2015, 132, 958-965.	1.2	1
33	Categorization of Inspection Elements in Coordinates Measurement for a KBE Implementation. Procedia Engineering, 2015, 132, 1037-1044.	1.2	1
34	Tool Wear Classification Using LBP-based Descriptors Combined with LOSIB-based Enhancers. Procedia Engineering, 2015, 132, 950-957.	1.2	2
35	Estimation of Cutting Forces and Tool Wear Using Modified Mechanistic Models in High Performance Turning. Materials Forming, Machining and Tribology, 2015, , 49-107.	1.1	1
36	KBE rules oriented to resources management in coordinates inspection by contact. Journal of Manufacturing Systems, 2015, 37, 149-163.	13.9	5

JoaquÃn Barreiro

#	Article	IF	CITATIONS
37	A new concept of feature-based gauge for coordinate measuring arm evaluation. Measurement Science and Technology, 2014, 25, 065004.	2.6	21
38	The Use of Virtual Circles Gauge for a Quick Verification of Portable Measuring Arms. Key Engineering Materials, 2014, 615, 70-75.	0.4	2
39	Influence of human factor in the AACMM performance: a new evaluation methodology. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1283-1291.	2.2	15
40	Effect of mechanical pre-treatments in the behaviour of nanostructured PVD-coated tools in turning. International Journal of Advanced Manufacturing Technology, 2014, 73, 1119-1132.	3.0	34
41	AACMM Performance Test: Influence of Human Factor and Geometric Features. Procedia Engineering, 2014, 69, 442-448.	1.2	11
42	Study of Virtual Features in the Performance of Coordinate Measuring Arms. Procedia Engineering, 2014, 69, 433-441.	1.2	13
43	Evaluation of AACMM Using the Virtual Circles Method. Procedia Engineering, 2013, 63, 243-251.	1.2	19
44	Behaviour of PVD Coatings in the Turning of Austenitic Stainless Steels. Procedia Engineering, 2013, 63, 133-141.	1.2	67
45	Application of a Force Sensor to Improve the Reliability of Measurement with Articulated Arm Coordinate Measuring Machines. Sensors, 2013, 13, 10430-10448.	3.8	20
46	Management of Manufacturing Engineering Seminars in the Context of New Educational Trends. Materials Science Forum, 2013, 759, 113-119.	0.3	0
47	High-performance machining of austenitic stainless steels. , 2013, , 29-90.		6
48	A Mechanistic Model for High Speed Turning of Austenitic Stainless Steels. Advanced Materials Research, 2012, 498, 1-6.	0.3	1
49	Methodology for identifying and representing knowledge in the scope of CMM inspection resource selection. , 2012, , .		3
50	Surface roughness prediction from combination of cutting forces, turning vibrations and machining conditions using artificial neural networks. , 2012, , .		0
51	Evaluation of influence parameters on measurement reliability of coordinated measuring arms. , 2012, , .		8
52	The influence of cutting speed in austenitic stainless steel machining: Study of specific force coefficients. , 2012, , .		1
53	Behavior of austenitic stainless steels at high speed turning using specific force coefficients. International Journal of Advanced Manufacturing Technology, 2012, 62, 505-515.	3.0	60
54	A evaluation of surface roughness classes by computer vision using wavelet transform in the frequency domain. International Journal of Advanced Manufacturing Technology, 2012, 59, 213-220.	3.0	41

JoaquÃn Barreiro

#	Article	IF	CITATIONS
55	A new improved Laws-based descriptor for surface roughness evaluation. International Journal of Advanced Manufacturing Technology, 2012, 59, 605-615.	3.0	10
56	Real-Time Contact Force Measurement System for Portable Coordinate Measuring Arms. Annals of DAAAM & Proceedings, 2012, , 0267-0272.	0.1	3
57	Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels. International Journal of Advanced Manufacturing Technology, 2011, 57, 61-71.	3.0	78
58	A new process-based ontology for KBE system implementation: application to inspection process planning. International Journal of Advanced Manufacturing Technology, 2011, 57, 325-339.	3.0	14
59	Tools for Teaching-Learning of Manufacturing Engineering Using Content Management Platforms. Materials Science Forum, 2011, 692, 104-111.	0.3	2
60	Conceptual principles and ontology for a KBE implementation in inspection planning. International Journal of Mechatronics and Manufacturing Systems, 2010, 3, 451.	0.1	3
61	Analysis of laser scanning and strategies for dimensional and geometrical control. International Journal of Advanced Manufacturing Technology, 2010, 46, 621-629.	3.0	67
62	Methodology for comparison of laser digitizing versus contact systems in dimensional control. Optics and Lasers in Engineering, 2010, 48, 1238-1246.	3.8	29
63	Implementation of decision rules for CMM sampling in a KBE system. , 2010, , 335-338.		3
64	Surface Finish Control in Machining Processes Using Haralick Descriptors and Neuronal Networks. Lecture Notes in Computer Science, 2010, , 231-241.	1.3	0
65	Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 2009, 15, 3.	0.4	15
66	Use of descriptors based on moments from digital images for tool wear monitoring. International Journal of Machine Tools and Manufacture, 2008, 48, 1005-1013.	13.4	42
67	Computer Vision and Classification Techniques on the Surface Finish Control in Machining Processes. Lecture Notes in Computer Science, 2008, , 1101-1110.	1.3	5
68	On-line tool wear monitoring using geometric descriptors from digital images. International Journal of Machine Tools and Manufacture, 2007, 47, 1847-1853.	13.4	141
69	Design of a Computer Vision System to Estimate Tool Wearing. Materials Science Forum, 2006, 526, 61-66.	0.3	14
70	Validation of an information model for inspection with CMM. International Journal of Machine Tools and Manufacture, 2005, 45, 819-829.	13.4	10
71	Automatización e Integración de la Inspección Dimensional con Máquinas de Medir por Coordenadas. Informacion Tecnologica (discontinued), 2004, 15, .	0.3	0
72	Information model for the integration of inspection activity in a concurrent engineering framework. International Journal of Machine Tools and Manufacture, 2003, 43, 797-809.	13.4	21

#	Article	IF	CITATIONS
73	Functional model for the development of an inspection integration framework. International Journal of Machine Tools and Manufacture, 2003, 43, 1621-1632.	13.4	9
74	Reliability of Monitoring Signals for Estimation of Surface Roughness in Metallic Turned Parts. Advanced Materials Research, 0, 498, 213-218.	0.3	1
75	Design of a Computer Vision System to Estimate Tool Wearing. Materials Science Forum, 0, , 61-66.	0.3	0