
Yao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the antiaromatic character and charge transport of pentalene-based antiaromatic compounds by substitution. Journal of Materials Chemistry C, 2022, 10, 2724-2731.	5.5	10
2	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	46
3	SIERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. Plant Cell, 2022, 34, 1250-1272.	6.6	57
4	All-Polymer Solar Cells Incorporating Readily Accessible Naphthalene Diimide and Isoindigo Acceptor Polymers for Improved Light Harvesting. Chemistry of Materials, 2022, 34, 3267-3279.	6.7	14
5	Systematic Analysis of Self-Assembled Nanodielectric Architecture and Organization Effects on Organic Transistor Switching. ACS Applied Electronic Materials, 2022, 4, 2015-2025.	4.3	2
6	Computational insight into the mechanism and stereoselectivity of cycloaddition between donor–acceptor spirocyclopropane and aldehyde catalyzed by BrÃ,nsted acid TsOH. Organic and Biomolecular Chemistry, 2022, 20, 4006-4015.	2.8	3
7	Highly stretchable organic electrochemical transistors with strain-resistant performance. Nature Materials, 2022, 21, 564-571.	27.5	86
8	2,3-Diphenylthieno[3,4- <i>b</i>]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2118-2127.	17.4	27
9	Porous Semiconducting Polymers Enable Highâ€Performance Electrochemical Transistors. Advanced Materials, 2021, 33, e2007041.	21.0	61
10	Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 15399-15408.	8.0	24
11	Nitrogen-influenced competition between the genders of <i>Salix rehderiana</i> . Tree Physiology, 2021, 41, 2375-2391.	3.1	7
12	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nature Communications, 2021, 12, 4937.	12.8	19
13	To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2% when the Donor Polymer is Halogenâ€Free. Advanced Energy Materials, 2021, 11, 2102648.	19.5	33
14	Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. Joule, 2020, 4, 189-206.	24.0	154
15	Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2020, 2, 100042.	19.1	55
16	Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18231-18239.	7.1	31
17	Printable Organicâ€Inorganic Nanoscale Multilayer Gate Dielectrics for Thinâ€Film Transistors Enabled by a Polymeric Organic Interlayer. Advanced Functional Materials, 2020, 30, 2005069.	14.9	12
18	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. ACS Energy Letters, 2020, 5, 1780-1787.	17.4	58

ΥΑΟ CHEN

#	Article	IF	CITATIONS
19	Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. Journal of the American Chemical Society, 2020, 142, 12440-12452.	13.7	27
20	Breath figure–derived porous semiconducting films for organic electronics. Science Advances, 2020, 6, eaaz1042.	10.3	81
21	Overexpression of bHLH95, a basic helix–loop–helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. Journal of Experimental Botany, 2020, 71, 3450-3462.	4.8	32
22	Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics. ACS Applied Materials & Interfaces, 2020, 12, 34901-34909.	8.0	3
23	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17551-17557.	7.1	24
24	Ï€-Extended Naphthalene Diimide Derivatives for n-Type Semiconducting Polymers. Chemistry of Materials, 2020, 32, 5317-5326.	6.7	32
25	Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors. Chemistry of Materials, 2019, 31, 7608-7617.	6.7	23
26	Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes. Advanced Materials, 2019, 31, e1903239.	21.0	89
27	Marked Cofuel Tuning of Combustion Synthesis Pathways for Metal Oxide Semiconductor Films. Advanced Electronic Materials, 2019, 5, 1900540.	5.1	13
28	Perovskite Solar Cells: Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes (Adv. Mater.) Tj ETQqO	0 Ø1r.gBT /	Oværlock 10
29	A Narrowâ€Bandgap nâ€Type Polymer Semiconductor Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2019, 31, e1905161.	21.0	121
30	Recent Advances in Squaraine Dyes for Bulk-Heterojunction Organic Solar Cells. Organic Photonics and Photovoltaics, 2019, 6, 1-16.	1.3	15
31	Isomers of Dithienocyclopentapyreneâ€Based Nonâ€Fullerene Electron Acceptors: Configuration Effect on Photoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6385-6391.	3.3	10
32	Design, synthesis, and antibacterial evaluation of novel derivatives of NPS-2143 for the treatment of methicillin-resistant S. aureus (MRSA) infection. Journal of Antibiotics, 2019, 72, 545-554.	2.0	7
33	Polymer Doping Enables a Twoâ€Dimensional Electron Gas for Highâ€Performance Homojunction Oxide Thinâ€Film Transistors. Advanced Materials, 2019, 31, e1805082.	21.0	43
34	Synthesis of 3 <i>H</i> â€Benzo[e]indoline and Its Application to Smallâ€Molecule Organic Solar Cells. Chemistry - A European Journal, 2018, 24, 8747-8750.	3.3	15
35	Photovoltaic Devices Prepared through a Trihydroxy Substitution Strategy on an Unsymmetrical Squaraine Dye. Chemistry - A European Journal, 2018, 24, 3234-3240.	3.3	18
36	Novel unsymmetrical squaraine-based small molecules for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 847-854.	5.5	22

ΥΑΟ CHEN

#	Article	IF	CITATIONS
37	Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indium–Gallium–Zinc Oxide Transistors. Chemistry of Materials, 2018, 30, 3323-3329.	6.7	35
38	The tomato Ethylene Response Factor Slâ€ <scp>ERF</scp> .B3 integrates ethylene and auxin signaling via direct regulation of <i>Slâ€Aux/<scp>IAA</scp>27</i> . New Phytologist, 2018, 219, 631-640.	7.3	75
39	lon-Transport Design for High-Performance Na ⁺ -Based Electrochromics. ACS Nano, 2018, 12, 3759-3768.	14.6	136
40	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123.	5.9	4
41	Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. Journal of the American Chemical Society, 2018, 140, 12501-12510.	13.7	43
42	Performance, Morphology, and Charge Recombination Correlations in Ternary Squaraine Solar Cells. Chemistry of Materials, 2018, 30, 6810-6820.	6.7	22
43	A novel tomato Fâ€box protein, SIEBF3, is involved in tuning ethylene signaling during plant development and climacteric fruit ripening. Plant Journal, 2018, 95, 648-658.	5.7	48
44	Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26465-26472.	8.0	28
45	The influence of intramolecular noncovalent interactions in unsymmetrical squaraines on material properties, film morphologyÂand photovoltaic performance. Dyes and Pigments, 2017, 145, 222-232.	3.7	19
46	The effects of SQ additive on charge carrier transport and recombination in PCDTBT:PC71BM based ternary organic solar cells. Synthetic Metals, 2017, 234, 125-131.	3.9	4
47	An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit Voltage. Chemistry - A European Journal, 2016, 22, 14527-14530.	3.3	32
48	Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Advances, 2016, 6, 1877-1884.	3.6	12
49	Asymmetrical Squaraines Bearing Fluorine-Substituted Indoline Moieties for High-Performance Solution-Processed Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 13675-13684.	8.0	39
50	Asymmetrical squaraines for high-performance small-molecule organic solar cells with a short circuit current of over 12 mA cm ^{â"2} . Chemical Communications, 2015, 51, 6133-6136.	4.1	33
51	Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole–dipole interactions as a high performance small molecular organic solar cells material. Journal of Materials Chemistry A, 2015, 3, 17704-17712.	10.3	40
52	A low bandgap asymmetrical squaraine for high-performance solution-processed small molecule organic solar cells. Chemical Communications, 2014, 50, 9346-9348.	4.1	36