
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4778982/publications.pdf Version: 2024-02-01

YUNLONG

#	Article	IF	CITATIONS
1	Bioimaging of metals in environmental toxicological studies: Linking localization and functionality. Critical Reviews in Environmental Science and Technology, 2022, 52, 3384-3414.	6.6	15
2	Multi-omics reveals the regulatory mechanisms of zinc exposure on the intestine-liver axis of golden pompano Trachinotus ovatus. Science of the Total Environment, 2022, 816, 151497.	3.9	6
3	Immune responses of oyster hemocyte subpopulations to in vitro and in vivo zinc exposure. Aquatic Toxicology, 2022, 242, 106022.	1.9	8
4	Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity. Environmental Pollution, 2022, 299, 118891.	3.7	7
5	Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. Science of the Total Environment, 2022, 835, 155457.	3.9	5
6	Transfer and bioavailability of inorganic and organic arsenic in sediment-water-biota microcosm. Aquatic Toxicology, 2021, 232, 105763.	1.9	11
7	Protein molecular responses of field-collected oysters Crassostrea hongkongensis with greatly varying Cu and Zn body burdens. Aquatic Toxicology, 2021, 232, 105749.	1.9	5
8	Zinc source differentiation in hydrothermal vent mollusks: Insight from Zn isotope ratios. Science of the Total Environment, 2021, 773, 145653.	3.9	6
9	Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. Aquatic Toxicology, 2021, 236, 105859.	1.9	12
10	Copper promoting oyster larval growth and settlement: Molecular insights from RNA-seq. Science of the Total Environment, 2021, 784, 147159.	3.9	8
11	Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters. Environmental Pollution, 2021, 284, 117533.	3.7	5
12	Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures. Environmental Pollution, 2021, 289, 117941.	3.7	3
13	Molecular responses of an estuarine oyster to multiple metal contamination in Southern China revealed by RNA-seq. Science of the Total Environment, 2020, 701, 134648.	3.9	15
14	Environmental Pollution of the Pearl River Estuary, China. Estuaries of the World, 2020, , .	0.1	7
15	Using Zn Isotopic Signatures for Source Identification in a Contaminated Estuary of Southern China. Environmental Science & Technology, 2020, 54, 5140-5149.	4.6	20
16	<i>In vivo</i> monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chemical Science, 2020, 11, 3152-3163.	3.7	52
17	Spatial-temporal variations and trends predication of trace metals in oysters from the Pearl River Estuary of China during 2011–2018. Environmental Pollution, 2020, 264, 114812.	3.7	29
18	Trace Metals and Ecotoxicological Effects in the Pearl River Estuary. Estuaries of the World, 2020, , 107-117.	0.1	0

#	Article	IF	CITATIONS
19	Trace Metals in the Water Column and Sediments. Estuaries of the World, 2020, , 37-55.	0.1	0
20	Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution, 2019, 251, 264-276.	3.7	23
21	Zn Isotope Fractionation in the Oyster <i>Crassostrea hongkongensis</i> and Implications for Contaminant Source Tracking. Environmental Science & amp; Technology, 2019, 53, 6402-6409.	4.6	19
22	Establishing baseline trace metals in marine bivalves in China and worldwide: Meta-analysis and modeling approach. Science of the Total Environment, 2019, 669, 746-753.	3.9	37
23	Modeling the Toxicokinetics of Multiple Metals in the Oyster <i>Crassostrea hongkongensis</i> in a Dynamic Estuarine Environment. Environmental Science & Technology, 2018, 52, 484-492.	4.6	30
24	Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. Aquatic Toxicology, 2018, 198, 257-268.	1.9	37
25	Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes. Science of the Total Environment, 2018, 616-617, 594-601.	3.9	9
26	Metal accumulation, growth and reproduction of razor clam Sinonovacula constricta transplanted in a multi-metal contaminated estuary. Science of the Total Environment, 2018, 636, 829-837.	3.9	19
27	Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. Environmental Sciences: Processes and Impacts, 2018, 20, 892-912.	1.7	48
28	Copper-induced metabolic variation of oysters overwhelmed by salinity effects. Chemosphere, 2017, 174, 331-341.	4.2	18
29	Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. Environmental Pollution, 2017, 224, 658-669.	3.7	84
30	Chronic effects of copper in oysters <i>Crassostrea hongkongensis</i> under different exposure regimes as shown by NMRâ€based metabolomics. Environmental Toxicology and Chemistry, 2017, 36, 2428-2435.	2.2	12
31	Molecular characterization and expression analysis of interferon-gamma in black seabream Acanthopagrus schlegelii. Fish and Shellfish Immunology, 2017, 70, 140-148.	1.6	22
32	Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. Aquatic Toxicology, 2017, 191, 34-41.	1.9	17
33	Establishment and characterization of a brain cell line from sea perch, Lateolabrax japonicus. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 834-840.	0.7	37
34	In Situ Subcellular Imaging of Copper and Zinc in Contaminated Oysters Revealed by Nanoscale Secondary Ion Mass Spectrometry. Environmental Science & Technology, 2017, 51, 14426-14435.	4.6	31
35	Relating metals with major cations in oyster Crassostrea hongkongensis: A novel approach to calibrate metals against salinity. Science of the Total Environment, 2017, 577, 299-307.	3.9	26
36	A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis. Marine Pollution Bulletin, 2016, 112, 436-442.	2.3	15

#	Article	IF	CITATIONS
37	Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. Environmental Pollution, 2016, 216, 156-165.	3.7	42
38	Physiological and cellular responses of oysters (<i>Crassostrea hongkongensis</i>) in a multimetalâ€contaminated estuary. Environmental Toxicology and Chemistry, 2016, 35, 2577-2586.	2.2	26
39	Antioxidant and detoxification responses of oysters <i>Crassostrea hongkongensis</i> in a multimetalâ€contaminated estuary. Environmental Toxicology and Chemistry, 2016, 35, 2798-2805.	2.2	21
40	Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. Science of the Total Environment, 2016, 544, 281-290.	3.9	43
41	Comparison of Bioavailability and Biotransformation of Inorganic and Organic Arsenic to Two Marine Fish. Environmental Science & Technology, 2016, 50, 2413-2423.	4.6	53
42	Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Scientific Reports, 2015, 5, 17751.	1.6	30
43	Reproductive Responses and Detoxification of Estuarine Oyster <i>Crassostrea hongkongensis</i> under Metal Stress: A Seasonal Study. Environmental Science & Technology, 2015, 49, 3119-3127.	4.6	32
44	Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish. Environmental Pollution, 2015, 206, 202-208.	3.7	17
45	Speciation of Cu and Zn in Two Colored Oyster Species Determined by X-ray Absorption Spectroscopy. Environmental Science & Technology, 2015, 49, 6919-6925.	4.6	33
46	Improved tolerance of metals in contaminated oyster larvae. Aquatic Toxicology, 2014, 146, 61-69.	1.9	36
47	Estuarine Pollution of Metals in China: Science and Mitigation. Environmental Science & Technology, 2014, 48, 9975-9976.	4.6	41
48	Inter-site differences of zinc susceptibility of the oyster Crassostrea hongkongensis. Aquatic Toxicology, 2013, 132-133, 26-33.	1.9	40
49	Spatial variation and subcellular binding of metals in oysters from a large estuary in China. Marine Pollution Bulletin, 2013, 70, 274-280.	2.3	50
50	Reconstructing the Biokinetic Processes of Oysters to Counteract the Metal Challenges: Physiological Acclimation. Environmental Science & Technology, 2012, 46, 10765-10771.	4.6	50
51	Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 2012, 421-422, 3-16.	3.9	663
52	Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure. Journal of Hazardous Materials, 2012, 221-222, 162-169.	6.5	73
53	Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environmental Toxicology and Chemistry, 2011, 30, 1767-1774.	2.2	122
54	Biodynamics To Explain the Difference of Copper Body Concentrations in Five Marine Bivalve Species. Environmental Science & Technology, 2009, 43, 2137-2143.	4.6	96

#	Article	IF	CITATIONS
55	Subcellular Partitioning and the Prediction of Cadmium Toxicity to Aquatic Organisms. Environmental Chemistry, 2006, 3, 395.	0.7	139
56	Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety, 2005, 61, 145-159.	2.9	130
57	Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquatic Toxicology, 2001, 56, 33-51.	1.9	118