Amaia Calleja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4778912/publications.pdf

Version: 2024-02-01

361413 361022 1,269 47 20 35 citations h-index g-index papers 49 49 49 1232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	5-axis double-flank CNC machining of spiral bevel gears via custom-shaped toolsâ€"Part II: physical validations and experiments. International Journal of Advanced Manufacturing Technology, 2022, 119, 1647-1658.	3.0	17
2	Machining-induced characteristics of microstructure-supported LPBF-IN718 curved thin walls. Procedia CIRP, 2022, 108, 176-181.	1.9	2
3	A New Approach in the Design of Microstructured Ultralight Components to Achieve Maximum Functional Performance. Materials, 2021, 14, 1588.	2.9	30
4	Drilling of CFRP-Ti6Al4V stacks using CO2-cryogenic cooling. Journal of Manufacturing Processes, 2021, 64, 58-66.	5.9	55
5	Flank-Milling of Integral Blade Rotors Made in Ti6Al4V Using Cryo CO2 and Minimum Quantity Lubrication. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	20
6	A reliable clean process for five-axis milling of knee prostheses. International Journal of Advanced Manufacturing Technology, 2021, 115, 1605.	3.0	7
7	5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools — Part I: Modeling and simulation. Precision Engineering, 2020, 62, 204-212.	3.4	39
8	Manufacturing Processes of Integral Blade Rotors for Turbomachinery, Processes and New Approaches. Applied Sciences (Switzerland), 2020, 10, 3063.	2. 5	27
9	The Gender Perspective of Professional Competencies in Industrial Engineering Studies. Sustainability, 2020, 12, 2945.	3.2	6
10	Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface and Coatings Technology, 2019, 367, 327-335.	4.8	54
11	Burnishing of FSW Aluminum Al–Cu–Li Components. Metals, 2019, 9, 260.	2.3	37
12	Abrasive tool behavior comparing lubri-cooling techniques for Super Abrasive Machining full-slotting in Inconel®718. Procedia Manufacturing, 2019, 41, 642-649.	1.9	4
13	Blisk blades manufacturing technologies analysis. Procedia Manufacturing, 2019, 41, 714-722.	1.9	6
14	Manufacturing of human knee by cryogenic machining: Walking towards cleaner processes. Procedia Manufacturing, 2019, 41, 257-263.	1.9	12
15	Process performance and life cycle assessment of friction drilling on dual-phase steel. Journal of Cleaner Production, 2019, 213, 1147-1156.	9.3	26
16	FREE-FORM TOOLS DESIGN AND FABRICATION FOR FLANK SUPER ABRASIVE MACHINING (FSAM) NON DEVELOPABLE SURFACES. MM Science Journal, 2019, 2019, 3093-3098.	0.4	2
17	Highly accurate 5-axis flank CNC machining with conical tools. International Journal of Advanced Manufacturing Technology, 2018, 97, 1605-1615.	3.0	89
18	Drilling Process in Î ³ -TiAl Intermetallic Alloys. Materials, 2018, 11, 2379.	2.9	12

#	Article	IF	CITATIONS
19	Super Abrasive Machining of Integral Rotary Components Using Grinding Flank Tools. Metals, 2018, 8, 24.	2.3	64
20	Comparison of Flank Super Abrasive Machining vs. Flank Milling on Inconel® 718 Surfaces. Materials, 2018, 11, 1638.	2.9	20
21	Hole Making by Electrical Discharge Machining (EDM) of γ-TiAl Intermetallic Alloys. Metals, 2018, 8, 543.	2.3	14
22	Inconel \hat{A} ®718 superalloy machinability evaluation after laser cladding additive manufacturing process. International Journal of Advanced Manufacturing Technology, 2018, 97, 2873-2885.	3.0	44
23	Spiral Bevel Gears Face Roughness Prediction Produced by CNC End Milling Centers. Materials, 2018, 11, 1301.	2.9	21
24	Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD) and Milling. Metals, 2018, 8, 102.	2.3	66
25	Five-Axis Milling of Large Spiral Bevel Gears: Toolpath Definition, Finishing, and Shape Errors. Metals, 2018, 8, 353.	2.3	39
26	Internal cryolubrication approach for Inconel 718 milling. Procedia Manufacturing, 2017, 13, 89-93.	1.9	52
27	CAM development for additive manufacturing in turbo-machinery components. Procedia Manufacturing, 2017, 13, 802-809.	1.9	4
28	Sustainability analysis of lubricant oils for minimum quantity lubrication based on their tribo-rheological performance. Journal of Cleaner Production, 2017, 164, 1419-1429.	9.3	111
29	Analysis of the regimes in the scanner-based laser hardening process. Optics and Lasers in Engineering, 2017, 90, 72-80.	3.8	72
30	MÃQUINAS MULTITAREA: EVOLUCIÓN, RECURSOS, PROCESOS Y PROGRAMACIÓN. Dyna (Spain), 2017, 92, 637-642.	0.2	6
31	Optimised methodology for aircraft engine IBRs five-axis machining process. International Journal of Mechatronics and Manufacturing Systems, 2016, 9, 385.	0.1	10
32	Optimised methodology for aircraft engine IBRs five-axis machining process. International Journal of Mechatronics and Manufacturing Systems, 2016, 9, 385.	0.1	1
33	Flank milling model for tool path programming of turbine blisks and compressors. International Journal of Production Research, 2015, 53, 3354-3369.	7.5	15
34	Turn-milling of blades in turning centres and multitasking machines controlling tool tilt angle. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 1324-1336.	2.4	16
35	Improvement of strategies and parameters for multi-axis laser cladding operations. Optics and Lasers in Engineering, 2014, 56, 113-120.	3.8	81
36	Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. International Journal of Advanced Manufacturing Technology, 2014, 74, 1219-1228.	3.0	68

#	Article	IF	CITATIONS
37	A methodology for process parameter selection in five axis laser cladding. International Journal of Mechatronics and Manufacturing Systems, 2014, 7, 82.	0.1	O
38	Propagation of assembly errors in multitasking machines by the homogenous matrix method. International Journal of Advanced Manufacturing Technology, 2013, 68, 149-164.	3.0	54
39	Optimal Parameters for 5-axis Laser Cladding. Procedia Engineering, 2013, 63, 45-52.	1.2	25
40	Reliable Manufacturing Process in Turbine Blisks and Compressors. Procedia Engineering, 2013, 63, 60-66.	1.2	16
41	New Trends in Higher Education for a Thinner Approach to Technological Needs of Manufacturing Companies. Materials Science Forum, 2013, 759, 129-135.	0.3	0
42	A New Approach for the Production of Blades by Hybrid Processes. , 2013, , 205-229.		1
43	Mechanistic Model for High Speed Turning of Austempered Ductile Irons. Advanced Materials Research, 2012, 498, 163-168.	0.3	0
44	Sand moulds milling for one-of-a-kind pieces. , 2012, , .		0
45	Maximal reduction of steps for iron casting one-of-a-kind parts. Journal of Cleaner Production, 2012, 24, 48-55.	9.3	23
46	Rapid Reproduction of Unique Parts by Sand Block Milling. Advanced Materials Research, 0, 498, 207-212.	0.3	1
47	Geometria konplexuko pieza baten mekanizazio estrategiak CAM bidez. Ekaia (journal), 0, , .	0.0	0