
## Elena Goicoechea De Jorge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4778868/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Factor H–Related Protein 1 Drives Disease Susceptibility and Prognosis in C3 Glomerulopathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1137-1153.                                                                | 6.1 | 12        |
| 2  | A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Frontiers in Immunology, 2021, 12, 660194.                                                                                                           | 4.8 | 26        |
| 3  | Molecular bases for the association of FHR-1 with atypical hemolytic uremic syndrome and other diseases. Blood, 2021, 137, 3484-3494.                                                                                                 | 1.4 | 17        |
| 4  | Defining the Glycosaminoglycan Interactions of Complement Factor H–Related Protein 5. Journal of<br>Immunology, 2021, 207, 534-541.                                                                                                   | 0.8 | 9         |
| 5  | Mycophenolate Mofetil in C3 Glomerulopathy and Pathogenic Drivers of the Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1287-1298.                                                                 | 4.5 | 36        |
| 6  | Familial risk of developing atypical hemolytic-uremic syndrome. Blood, 2020, 136, 1558-1561.                                                                                                                                          | 1.4 | 18        |
| 7  | Factor H Competitor Generated by Gene Conversion Events Associates with Atypical Hemolytic Uremic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 240-249.                                                   | 6.1 | 34        |
| 8  | How novel structures inform understanding of complement function. Seminars in Immunopathology, 2018, 40, 3-14.                                                                                                                        | 6.1 | 6         |
| 9  | Low FHR-5 levels contribute to infection-triggered haemolytic uraemic<br>syndrome/membranoproliferative glomerulonephritis. Molecular Immunology, 2018, 102, 155.                                                                     | 2.2 | 0         |
| 10 | Common and rare genetic variants of complement components in human disease. Molecular<br>Immunology, 2018, 102, 42-57.                                                                                                                | 2.2 | 18        |
| 11 | Elevated factor H–related protein 1 and factor H pathogenic variants decrease complement regulation<br>inÂlgA nephropathy. Kidney International, 2017, 92, 953-963.                                                                   | 5.2 | 87        |
| 12 | Factor H-related proteins determine complement-activating surfaces. Trends in Immunology, 2015, 36, 374-384.                                                                                                                          | 6.8 | 130       |
| 13 | Factor H–Related Protein 5 Interacts with Pentraxin 3 and the Extracellular Matrix and Modulates<br>Complement Activation. Journal of Immunology, 2015, 194, 4963-4973.                                                               | 0.8 | 75        |
| 14 | C3 glomerulopathy: consensus report. Kidney International, 2013, 84, 1079-1089.                                                                                                                                                       | 5.2 | 505       |
| 15 | Dimerization of complement factor H-related proteins modulates complement activation in vivo.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4685-4690.                               | 7.1 | 243       |
| 16 | Design and Evaluation of Meningococcal Vaccines through Structure-Based Modification of Host and<br>Pathogen Molecules. PLoS Pathogens, 2012, 8, e1002981.                                                                            | 4.7 | 53        |
| 17 | A Hybrid CFHR3-1 Gene Causes Familial C3 Glomerulopathy. Journal of the American Society of<br>Nephrology: JASN, 2012, 23, 1155-1160.                                                                                                 | 6.1 | 120       |
| 18 | Acute Presentation and Persistent Glomerulonephritis Following Streptococcal Infection in a Patient<br>With Heterozygous Complement Factor H–Related Protein 5 Deficiency. American Journal of Kidney<br>Diseases, 2012, 60, 121-125. | 1.9 | 95        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recurrence of Complement Factor H-Related Protein 5 Nephropathy in a Renal Transplant. American<br>Journal of Transplantation, 2011, 11, 152-155.                                                                    | 4.7  | 37        |
| 20 | Differential binding of CFHR5 and factor H to C3 metabolites suggests that these two proteins regulate complement activation at different stages. Molecular Immunology, 2011, 48, 1675.                              | 2.2  | 0         |
| 21 | The Development of Atypical Hemolytic Uremic Syndrome Depends on Complement C5. Journal of the American Society of Nephrology: JASN, 2011, 22, 137-145.                                                              | 6.1  | 105       |
| 22 | Human CFH rapidly reverses renal complement deposition in factor H-deficient mice. Molecular<br>Immunology, 2010, 47, 2201-2201.                                                                                     | 2.2  | 0         |
| 23 | Atypical hemolytic uremic syndrome: telling the difference between H and Y. Kidney International, 2010, 78, 721-723.                                                                                                 | 5.2  | 7         |
| 24 | Treatment with human complement factor H rapidly reverses renal complement deposition in factor<br>H-deficient mice. Kidney International, 2010, 78, 279-286.                                                        | 5.2  | 94        |
| 25 | Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet, The, 2010, 376, 794-801.                                                        | 13.7 | 298       |
| 26 | Lack of association between polymorphisms in C4b-binding protein and atypical haemolytic uraemic syndrome in the Spanish population. Clinical and Experimental Immunology, 2009, 155, 59-64.                         | 2.6  | 13        |
| 27 | A mutant complement factor H-related 5 protein is associated with familial C3 glomerulonephritis.<br>Molecular Immunology, 2009, 46, 2822.                                                                           | 2.2  | 2         |
| 28 | Insights into the role of complement dysregulation in atypical haemolytic uremic syndrome.<br>Molecular Immunology, 2009, 46, 2851.                                                                                  | 2.2  | 1         |
| 29 | Mutations in Proteins of the Alternative Pathway of Complement and the Pathogenesis of Atypical<br>Hemolytic Uremic Syndrome. American Journal of Kidney Diseases, 2008, 52, 171-180.                                | 1.9  | 24        |
| 30 | Genetic deficiency of complement factor H in a patient with age-related macular degeneration and membranoproliferative glomerulonephritis. Molecular Immunology, 2008, 45, 2897-2904.                                | 2.2  | 46        |
| 31 | Complement Factor H Binds to Denatured Rather than to Native Pentameric C-reactive Protein. Journal of Biological Chemistry, 2008, 283, 30451-30460.                                                                 | 3.4  | 82        |
| 32 | Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. Journal of Experimental Medicine, 2007, 204, 1249-1256.                                                  | 8.5  | 267       |
| 33 | Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic<br>syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>240-245. | 7.1  | 429       |
| 34 | Spontaneous haemolytic uraemic syndrome (HUS) in factor H-deficient mice transgenic for murine<br>factor H protein lacking the five C-terminal domains (FHΔ16–20). Molecular Immunology, 2007, 44,<br>227-228.       | 2.2  | 0         |
| 35 | The Spanish atypical haemolytic uraemic syndrome registry: A genetic update. Molecular Immunology,<br>2007, 44, 3923.                                                                                                | 2.2  | 2         |
| 36 | Factor H allele-specific quantification in Tyr402His heterozygotes reveals the existence of<br>low-expression alleles associated with atypical haemolytic uraemic syndrome. Molecular<br>Immunology, 2007, 44, 3925. | 2.2  | 2         |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel complement factor H mutation in SCR7 in a patient with age-related macular degeneration and membranoproliferative glomerulonephritis type II. Molecular Immunology, 2007, 44, 3973.                                                                                    | 2.2 | 0         |
| 38 | Analytical ultracentrifugation analysis of the human complement factor H variants 402His and 402Tyr. Molecular Immunology, 2007, 44, 3982.                                                                                                                                   | 2.2 | 1         |
| 39 | The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Human Mutation, 2007, 28, 222-234.                                             | 2.5 | 160       |
| 40 | Translational Mini-Review Series on Complement Factor H: Genetics and disease associations of human complement factor H. Clinical and Experimental Immunology, 2007, 151, 1-13.                                                                                              | 2.6 | 252       |
| 41 | Insights into hemolytic uremic syndrome: Segregation of three independent predisposition factors in a large, multiple affected pedigree. Molecular Immunology, 2006, 43, 1769-1775.                                                                                          | 2.2 | 122       |
| 42 | Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Human Molecular Genetics, 2005, 14, 703-712.                                              | 2.9 | 272       |
| 43 | Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Human Molecular Genetics, 2005, 14, 1107-1107.                                            | 2.9 | 7         |
| 44 | The human complement factor H: functional roles, genetic variations and disease associations.<br>Molecular Immunology, 2004, 41, 355-367.                                                                                                                                    | 2.2 | 514       |
| 45 | Molecular analyses of the HGO gene mutations in Turkish alkaptonuria patients suggest that the R58fs<br>mutation originated from Central Asia and was spread throughout Europe and Anatolia by human<br>migrations. Journal of Inherited Metabolic Disease, 2003, 26, 17-23. | 3.6 | 19        |
| 46 | Alkaptonuria in the Dominican Republic: identification of the founder AKU mutation and further evidence of mutation hot spots in the HGO gene. Journal of Medical Genetics, 2002, 39, 40e-40.                                                                                | 3.2 | 32        |
| 47 | Development and validation of a nomogram to predict kidney survival at baseline in patients with C3 glomerulopathy. CKJ: Clinical Kidney Journal, 0, , .                                                                                                                     | 2.9 | 3         |