Stacey M Trevathan-Tackett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4778314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment. Marine Pollution Bulletin, 2014, 83, 430-439.	2.3	195
2	Can we manage coastal ecosystems to sequester more blue carbon?. Frontiers in Ecology and the Environment, 2017, 15, 206-213.	1.9	195
3	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	3.9	177
4	Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology, 2015, 96, 3043-3057.	1.5	162
5	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
6	Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151537.	1.2	102
7	Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology, 2017, 93, .	1.3	82
8	A horizon scan of priorities for coastal marine microbiome research. Nature Ecology and Evolution, 2019, 3, 1509-1520.	3.4	77
9	Identifying knowledge gaps in seagrass research and management: An Australian perspective. Marine Environmental Research, 2017, 127, 163-172.	1.1	68
10	Review: Host-pathogen dynamics of seagrass diseases under future global change. Marine Pollution Bulletin, 2018, 134, 75-88.	2.3	68
11	A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration. Frontiers in Plant Science, 2017, 8, 925.	1.7	67
12	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	5.1	50
13	Converting beach-cast seagrass wrack into biochar: A climate-friendly solution to a coastal problem. Science of the Total Environment, 2017, 574, 90-94.	3.9	48
14	Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance. Frontiers in Marine Science, 2019, 6, .	1.2	39
15	Long-term decomposition captures key steps in microbial breakdown of seagrass litter. Science of the Total Environment, 2020, 705, 135806.	3.9	39
16	Effects of smallâ€scale, shadingâ€induced seagrass loss on blue carbon storage: Implications for management of degraded seagrass ecosystems. Journal of Applied Ecology, 2018, 55, 1351-1359.	1.9	38
17	Fresh carbon inputs to seagrass sediments induce variable microbial priming responses. Science of the Total Environment, 2018, 621, 663-669.	3.9	37
18	Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquatic Botany, 2015, 122, 1-8.	0.8	34

#	Article	IF	CITATIONS
19	Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows. MicrobiologyOpen, 2018, 7, e00600.	1.2	34
20	Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies. Global Biogeochemical Cycles, 2021, 35, e2021GB006935.	1.9	34
21	Operationalizing marketable blue carbon. One Earth, 2022, 5, 485-492.	3.6	34
22	Beach-cast seagrass wrack contributes substantially to global greenhouse gas emissions. Journal of Environmental Management, 2019, 231, 329-335.	3.8	33
23	Reducing Emissions From Degraded Floodplain Wetlands. Frontiers in Environmental Science, 2020, 8, .	1.5	32
24	Effects of short-term hypersalinity exposure on the susceptibility to wasting disease in the subtropical seagrass Thalassia testudinum. Plant Physiology and Biochemistry, 2011, 49, 1051-1058.	2.8	28
25	Towards evidence-based parameter values and priors for aquatic ecosystem modelling. Environmental Modelling and Software, 2018, 100, 74-81.	1.9	28
26	Bioturbatorâ€stimulated loss of seagrass sediment carbon stocks. Limnology and Oceanography, 2019, 64, 342-356.	1.6	27
27	Macroalgal Blooms Trigger the Breakdown of Seagrass Blue Carbon. Environmental Science & Technology, 2020, 54, 14750-14760.	4.6	24
28	Blue carbon drawdown by restored mangrove forests improves with age. Journal of Environmental Management, 2022, 306, 114301.	3.8	21
29	Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia. Frontiers in Marine Science, 2020, 7, .	1.2	20
30	Pathogenic Labyrinthula associated with Australian seagrasses: Considerations for seagrass wasting disease in the southern hemisphere. Microbiological Research, 2018, 206, 74-81.	2.5	19
31	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. Frontiers in Marine Science, 2021, 7, .	1.2	19
32	Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications. Acta Oceanologica Sinica, 2018, 37, 84-90.	0.4	16
33	Population genetic structure of the threatened tropical seagrass Enhalus acoroides in Hainan Island, China. Aquatic Botany, 2018, 150, 64-70.	0.8	15
34	Effects of elevated temperature on microbial breakdown of seagrass leaf and tea litter biomass. Biogeochemistry, 2020, 151, 171-185.	1.7	15
35	Implication of Viral Infections for Greenhouse Gas Dynamics in Freshwater Wetlands: Challenges and Perspectives. Frontiers in Microbiology, 2019, 10, 1962.	1.5	14
36	The First Isolation and Characterisation of the Protist <i>Labyrinthula</i> sp. in Southeastern Australia. Journal of Eukaryotic Microbiology, 2017, 64, 504-513.	0.8	13

#	Article	IF	CITATIONS
37	Sediment Sampling in Estuaries: Site Selection and Sampling Techniques. Developments in Paleoenvironmental Research, 2017, , 89-120.	7.5	13
38	Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Science of the Total Environment, 2021, 782, 146819.	3.9	12
39	Comment on â€~Geoengineering with seagrasses: is credit due where credit is given?'. Environmental Research Letters, 2018, 13, 028002.	2.2	11
40	Effects of a nutrient enrichment pulse on blue carbon ecosystems. Marine Pollution Bulletin, 2021, 165, 112024.	2.3	11
41	The potential of viruses to influence the magnitude of greenhouse gas emissions in an inland wetland. Water Research, 2021, 193, 116875.	5.3	11
42	The combined effect of short-term hydrological and N-fertilization manipulation of wetlands on CO2, CH4, and N2O emissions. Environmental Pollution, 2022, 294, 118637.	3.7	11
43	Nutrient loading decreases blue carbon by mediating fungi activities within seagrass meadows. Environmental Research, 2022, 212, 113280.	3.7	11
44	Assessing the relationship between seagrass health and habitat quality with wasting disease prevalence in the Florida Keys. Journal of Experimental Marine Biology and Ecology, 2013, 449, 221-229.	0.7	10
45	The Microbiology of Seagrasses. , 2018, , 343-392.		9
46	Plant litter composition and stable isotope signatures vary during decomposition in blue carbon ecosystems. Biogeochemistry, 2022, 158, 147-165.	1.7	9
47	Microbial community dynamics behind major release of methane in constructed wetlands. Applied Soil Ecology, 2021, 167, 104163.	2.1	8
48	Detachment and flow cytometric quantification of seagrass-associated bacteria. Journal of Microbiological Methods, 2014, 102, 23-25.	0.7	7
49	Local vegetation and hydroperiod influence spatial and temporal patterns of carbon and microbe response to wetland rehabilitation. Applied Soil Ecology, 2021, 163, 103917.	2.1	6
50	Assessing passive rehabilitation for carbon gains in rain-filled agricultural wetlands. Journal of Environmental Management, 2020, 256, 109971.	3.8	5
51	First Genome of LabyrinthulaÂsp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. Microbial Ecology, 2021, 82, 498-511.	1.4	3
52	Dumpster diving for diatom plastid 16S rRNA genes. PeerJ, 2021, 9, e11576.	0.9	3
53	Cryopreservation methods are effective for long-term storage of Labyrinthula cultures. Diseases of Aquatic Organisms, 2018, 130, 65-70.	0.5	3
54	mixchar: An R Package for the Deconvolution of Thermal Decay Curves. Journal of Open Research Software, 2021, 9, .	2.7	1