List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4778008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infection, Genetics and Evolution, 2019, 74, 103917.	2.3	227
2	Avian Interferons and Their Antiviral Effectors. Frontiers in Immunology, 2017, 8, 49.	4.8	126
3	Algorithm for T-Spherical Fuzzy Multi-Attribute Decision Making Based on Improved Interactive Aggregation Operators. Symmetry, 2018, 10, 670.	2.2	100
4	qâ€Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decisionâ€making. International Journal of Intelligent Systems, 2020, 35, 571-599.	5.7	86
5	T-Spherical Fuzzy Einstein Hybrid Aggregation Operators and Their Applications in Multi-Attribute Decision Making Problems. Symmetry, 2020, 12, 365.	2.2	81
6	The multiple faces of proteinkinase R in antiviral defense. Virulence, 2013, 4, 85-89.	4.4	78
7	Molecular Evolution of Peste des Petits Ruminants Virus. Emerging Infectious Diseases, 2014, 20, 2023-2033.	4.3	78
8	Covering-Based Spherical Fuzzy Rough Set Model Hybrid with TOPSIS for Multi-Attribute Decision-Making. Symmetry, 2019, 11, 547.	2.2	78
9	Biological characterization and phylogenetic analysis of a novel genetic group of Newcastle disease virus isolated from outbreaks in commercial poultry and from backyard poultry flocks in Pakistan. Infection, Genetics and Evolution, 2012, 12, 1010-1019.	2.3	70
10	Structural and functional insights into non-structural proteins of coronaviruses. Microbial Pathogenesis, 2021, 150, 104641.	2.9	69
11	Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity. Journal of Virology, 2016, 90, 4412-4426.	3.4	68
12	TRIM Proteins: Another Class of Viral Victims. Science Signaling, 2010, 3, jc2.	3.6	62
13	Multi-Attribute Multi-Perception Decision-Making Based on Generalized T-Spherical Fuzzy Weighted Aggregation Operators on Neutrosophic Sets. Mathematics, 2019, 7, 780.	2.2	53
14	Genomic and biological characterization of a velogenic Newcastle disease virus isolated from a healthy backyard poultry flock in 2010. Virology Journal, 2012, 9, 46.	3.4	51
15	Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. Journal of General Virology, 2013, 94, 2036-2049.	2.9	50
16	A Multi-Attribute Decision Making Process with Immediate Probabilistic Interactive Averaging Aggregation Operators of T-Spherical Fuzzy Sets and Its Application in the Selection of Solar Cells. Energies, 2019, 12, 4436.	3.1	47
17	Genetic diversity of Newcastle disease virus in Pakistan: a countrywide perspective. Virology Journal, 2013, 10, 170.	3.4	45
18	Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Scientific Reports, 2018, 8, 6794.	3.3	43

MUHAMMAD MUNIR

#	Article	IF	CITATIONS
19	RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Frontiers in Immunology, 2018, 9, 1083.	4.8	42
20	Hemoglobin Subunit Beta Interacts with the Capsid Protein and Antagonizes the Growth of Classical Swine Fever Virus. Journal of Virology, 2013, 87, 5707-5717.	3.4	40
21	Artificial Intelligence-Assisted Loop Mediated Isothermal Amplification (AI-LAMP) for Rapid Detection of SARS-CoV-2. Viruses, 2020, 12, 972.	3.3	40
22	A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Frontiers in Microbiology, 2018, 9, 1941.	3.5	39
23	Induction of innate immunity and its perturbation by influenza viruses. Protein and Cell, 2015, 6, 712-721.	11.0	36
24	Complete Genome Sequences of Lineage III Peste des Petits Ruminants Viruses from the Middle East and East Africa. Genome Announcements, 2014, 2, .	0.8	34
25	Long Non-Coding RNAs: Emerging and Versatile Regulators in Host–Virus Interactions. Frontiers in Immunology, 2017, 8, 1663.	4.8	33
26	Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	33
27	Some Similarity Measures for Interval-Valued Picture Fuzzy Sets and Their Applications in Decision Making. Information (Switzerland), 2019, 10, 369.	2.9	33
28	Genetic Characterization of Peste des Petits Ruminants Virus, Sierra Leone. Emerging Infectious Diseases, 2012, 18, 193-195.	4.3	33
29	Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infection, Genetics and Evolution, 2016, 44, 510-513.	2.3	32
30	Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses. Frontiers in Immunology, 2018, 9, 2025.	4.8	32
31	Complete genome characterisation of a Newcastle disease virus isolated during an outbreak in Sweden in 1997. Virus Genes, 2010, 41, 165-173.	1.6	29
32	Chicken IFN Kappa: A Novel Cytokine with Antiviral Activities. Scientific Reports, 2017, 7, 2719.	3.3	29
33	Suppression of Vimentin Phosphorylation by the Avian Reovirus p17 through Inhibition of CDK1 and Plk1 Impacting the G2/M Phase of the Cell Cycle. PLoS ONE, 2016, 11, e0162356.	2.5	29
34	Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage. Cellular Physiology and Biochemistry, 2018, 47, 1655-1666.	1.6	28
35	Algorithm for T-spherical fuzzy MADM based on associated immediate probability interactive geometric aggregation operators. Artificial Intelligence Review, 2021, 54, 6033-6061.	15.7	28
36	Sequencing and analysis of the complete genome of Newcastle disease virus isolated from a commercial poultry farm in 2010. Archives of Virology, 2012, 157, 765-768.	2.1	26

#	Article	IF	CITATIONS
37	Evolutionary insights into the fusion protein of Newcastle disease virus isolated from vaccinated chickens in 2016 in Egypt. Archives of Virology, 2017, 162, 3069-3079.	2.1	26
38	Fundamental Characteristics of Bat Interferon Systems. Frontiers in Cellular and Infection Microbiology, 2020, 10, 527921.	3.9	26
39	Complete Genome Sequencing of a Velogenic Viscerotropic Avian Paramyxovirus 1 Isolated from Pheasants (Pucrasia macrolopha) in Lahore, Pakistan. Journal of Virology, 2012, 86, 13828-13829.	3.4	24
40	Complete Genome Sequence of a Velogenic Neurotropic Avian Paramyxovirus 1 Isolated from Peacocks (Pavo cristatus) in a Wildlife Park in Pakistan. Journal of Virology, 2012, 86, 13113-13114.	3.4	24
41	Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform. Frontiers in Microbiology, 2016, 7, 1907.	3.5	24
42	Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds. Vaccine, 2017, 35, 3523-3527.	3.8	24
43	Human Hemoglobin Subunit Beta Functions as a Pleiotropic Regulator of RIG-I/MDA5-Mediated Antiviral Innate Immune Responses. Journal of Virology, 2019, 93, .	3.4	24
44	Complete Genome Analysis of an Avian Paramyxovirus Type 1 Strain Isolated in 1994 from an Asymptomatic Black-Headed Gull (Larus ridibundus) in Southern Sweden. Avian Diseases, 2010, 54, 923-930.	1.0	23
45	Evaluation of Risk Factors for Peste des Petits Ruminants Virus in Sheep and Goats at the Wildlife-Livestock Interface in Punjab Province, Pakistan. BioMed Research International, 2016, 2016, 1-6.	1.9	23
46	Mitogen-Activated Protein Kinase Kinase 2, a Novel E2-Interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway. Journal of Virology, 2016, 90, 10271-10283.	3.4	23
47	Some T-Spherical Fuzzy Einstein Interactive Aggregation Operators and Their Application to Selection of Photovoltaic Cells. Mathematical Problems in Engineering, 2020, 2020, 1-16.	1.1	23
48	Whole genome sequencing and characterization of a virulent Newcastle disease virus isolated from an outbreak in Sweden. Virus Genes, 2011, 43, 261-271.	1.6	22
49	Simultaneous Deletion of Virulence Factors and Insertion of Antigens into the Infectious Laryngotracheitis Virus Using NHEJ-CRISPR/Cas9 and Cre–Lox System for Construction of a Stable Vaccine Vector. Vaccines, 2019, 7, 207.	4.4	22
50	Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1–20. Molecular Phylogenetics and Evolution, 2018, 127, 931-951.	2.7	21
51	The Application of NHEJ-CRISPR/Cas9 and Cre-Lox System in the Generation of Bivalent Duck Enteritis Virus Vaccine against Avian Influenza Virus. Viruses, 2018, 10, 81.	3.3	21
52	MERTK is a host factor that promotes classical swine fever virus entry and antagonizes innate immune response in PK-15 cells. Emerging Microbes and Infections, 2020, 9, 571-581.	6.5	21
53	A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines, 2020, 8, 472.	4.4	20
54	Evolutionary Analysis of Infectious Bronchitis Virus Reveals Marked Genetic Diversity and Recombination Events. Genes, 2020, 11, 605.	2.4	20

#	Article	IF	CITATIONS
55	Alleles A and B of non-structural protein 1 of avian influenza A viruses differentially inhibit beta interferon production in human and mink lung cells. Journal of General Virology, 2011, 92, 2111-2121.	2.9	19
56	Genetic analysis of Newcastle disease virus from Punjab, Pakistan. Virus Genes, 2013, 46, 309-315.	1.6	19
57	Pathobiology of Avian avulavirus 1: special focus on waterfowl. Veterinary Research, 2018, 49, 94.	3.0	19
58	Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transboundary and Emerging Diseases, 2018, 65, 1851-1862.	3.0	19
59	Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens. Viruses, 2018, 10, 173.	3.3	19
60	Haemorrhagic enteritis of turkeys – current knowledge. Veterinary Quarterly, 2017, 37, 31-42.	6.7	18
61	Differences in the ability to suppress interferon β production between allele A and allele B NS1 proteins from H10 influenza A viruses. Virology Journal, 2010, 7, 376.	3.4	17
62	Genetic analysis of peste des petits ruminants virus from Pakistan. BMC Veterinary Research, 2013, 9, 60.	1.9	17
63	The X proteins of bornaviruses interfere with type I interferon signalling. Journal of General Virology, 2013, 94, 263-269.	2.9	16
64	Pathogenic Characterization and Full Length Genome Sequence of a Reassortant Infectious Bursal Disease Virus Newly Isolated in Pakistan. Virologica Sinica, 2019, 34, 102-105.	3.0	16
65	Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m6A) sites among influenza A viruses. Scientific Reports, 2021, 11, 4548.	3.3	16
66	Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-κB promoter activation. Virology Journal, 2011, 8, 383.	3.4	15
67	Some Generalized T-Spherical and Group-Generalized Fuzzy Geometric Aggregation Operators with Application in MADM Problems. Journal of Mathematics, 2021, 2021, 1-17.	1.0	15
68	Emergence and genetic analysis of variant pathogenic 4/91 (serotype 793/B) infectious bronchitis virus in Egypt during 2019. Virus Genes, 2019, 55, 720-725.	1.6	14
69	Genetic Diversity and Phylodynamics of Avian Coronaviruses in Egyptian Wild Birds. Viruses, 2019, 11, 57.	3.3	14
70	A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus. Scientific Reports, 2020, 10, 17.	3.3	14
71	A comparative phylogenomic analysis of peste des petits ruminants virus isolated from wild and unusual hosts. Molecular Biology Reports, 2019, 46, 5587-5593.	2.3	13
72	Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Frontiers in Cellular and Infection Microbiology, 2020, 10, 581504.	3.9	13

#	Article	IF	CITATIONS
73	Infectivity of wild bird-origin avian paramyxovirus serotype 1 and vaccine effectiveness in chickens. Journal of General Virology, 2016, 97, 3161-3173.	2.9	13
74	The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1. Virulence, 2013, 4, 612-623.	4.4	12
75	NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology, 2018, 518, 126-135.	2.4	12
76	Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential infection in commercial poultry. Archives of Virology, 2018, 163, 2743-2755.	2.1	12
77	Comparative efficacy of standard AGID and precipitinogen inhibition test with monoclonal antibodies based competitive ELISA for the serology of Peste des Petits Ruminants in sheep and goats. Tropical Animal Health and Production, 2009, 41, 413-420.	1.4	11
78	Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011—Review and recommendations for surveillance. Veterinary Microbiology, 2012, 154, 209-221.	1.9	11
79	Genomic and biological characterization of Newcastle disease viruses isolated from migratory mallards (Anas platyrhynchos). Archives of Virology, 2018, 163, 2179-2188.	2.1	11
80	The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology, 2018, 519, 197-206.	2.4	10
81	Dynamic Expression of Interferon Lambda Regulated Genes in Primary Fibroblasts and Immune Organs of the Chicken. Genes, 2019, 10, 145.	2.4	10
82	Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Frontiers in Cell and Developmental Biology, 2020, 8, 543.	3.7	9
83	Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 587108.	3.7	9
84	Debunking Myths about COVID-19, Paranoiac Misconceptions, Recent Developments and its Current Stance. Pakistan Journal of Zoology, 2020, 52, .	0.2	9
85	Equine arteritis virus induced cell death is associated with activation of the intrinsic apoptotic signalling pathway. Virus Research, 2013, 171, 222-226.	2.2	8
86	Molecular characterization of infectious bursal disease viruses from Pakistan. Archives of Virology, 2016, 161, 2001-2006.	2.1	8
87	Group-based generalized q-rung orthopair average aggregation operators and their applications in multi-criteria decision making. Complex & Intelligent Systems, 2021, 7, 123-144.	6.5	8
88	Transgenic Chicks Expressing Interferon-Inducible Transmembrane Protein 1 (IFITM1) Restrict Highly Pathogenic H5N1 Influenza Viruses. International Journal of Molecular Sciences, 2021, 22, 8456.	4.1	8
89	Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses, 2022, 14, 418.	3.3	8
90	Phylogenomics and Infectious Potential of Avian Avulaviruses Species-Type 1 Isolated from Healthy Green-Winged Teal (Anas carolinensis) from a Wetland Sanctuary of Indus River. Avian Diseases, 2018, 62, 404.	1.0	8

#	Article	IF	CITATIONS
91	Biological and genotypic characterization of the Newcastle disease virus isolated from disease outbreaks in commercial poultry farms in northern Punjab, Pakistan. Virology Reports, 2014, 3-4, 30-39.	0.4	7
92	Isolation and characterization of genotype XIII Newcastle disease virus from Emu in India. VirusDisease, 2016, 27, 315-318.	2.0	7
93	Genetic characterization of small ruminant morbillivirus from recently emerging wave of outbreaks in Pakistan. Transboundary and Emerging Diseases, 2018, 65, 2032-2038.	3.0	7
94	Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 74, 101594.	1.6	7
95	Double-Stranded RNA-Induced Activation of Activating Protein-1 Promoter Is Differentially Regulated by the Non-structural Protein 1 of Avian Influenza A Viruses. Viral Immunology, 2012, 25, 79-85.	1.3	6
96	Establishment of Stably Transfected Cells Constitutively Expressing the Full-Length and Truncated Antigenic Proteins of Two Genetically Distinct Mink Astroviruses. PLoS ONE, 2013, 8, e82978.	2.5	6
97	An Artificial Intelligence-Assisted Portable Low-Cost Device for the Rapid Detection of SARS-CoV-2. Electronics (Switzerland), 2021, 10, 2065.	3.1	6
98	Isolation and characterization of low pathogenic H9N2 avian influenza A viruses from a healthy flock and its comparison to other H9N2 isolates. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 342-348.	0.7	5
99	Peste des Petits Ruminants: An Introduction. , 2015, , 1-9.		5
100	Bioinformatics analysis of large-scale viral sequences. Virulence, 2013, 4, 97-106.	4.4	4
101	Differential Viral Fitness Between H1N1 and H3N8 Avian Influenza Viruses Isolated from Mallards (Anas) Tj ETQq1	1,0,7843 1.0	14 rgBT /Cw
102	Isolation of buffalo poxvirus from clinical case and variations in the genetics of the B5R gene over fifty passages. Virus Genes, 2015, 51, 45-50.	1.6	4
103	Genome-Wide Classification of Type I, Type II and Type III Interferon-Stimulated Genes in Chicken Fibroblasts. Vaccines, 2019, 7, 160.	4.4	4
104	Universal Transfer Printing of Micelle-Templated Nanoparticles Using Plasma-Functionalized Graphene. ACS Applied Materials & Interfaces, 2020, 12, 46530-46538.	8.0	4
105	Oncolytic effect of Newcastle disease virus is attributed to interferon regulation in canine mammary cancer cell lines. Veterinary and Comparative Oncology, 2021, 19, 593-601.	1.8	4
106	Estimation of Evolutionary Dynamics and Selection Pressure in Coronaviruses. Methods in Molecular Biology, 2015, 1282, 41-48.	0.9	4
107	Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. Journal of Virological Methods, 2018, 260, 88-97.	2.1	3
108	A comparative genomic and evolutionary analysis of circulating strains of Avian avulavirus 1 in Pakistan. Molecular Genetics and Genomics, 2019, 294, 1289-1309.	2.1	3

#	Article	IF	CITATIONS
109	Potential reverse spillover of infectious bursal disease virus at the interface of commercial poultry and wild birds. Virus Genes, 2020, 56, 705-711.	1.6	3
110	Insights into the Genetic Evolution of Duck Hepatitis A Virus in Egypt. Animals, 2021, 11, 2741.	2.3	3
111	Host Susceptibility to Peste des Petits Ruminants Virus. , 2015, , 39-50.		3
112	Complete Genome Sequence Analysis of a Vaccine Strain of Foot-and-Mouth Disease Virus Serotype O from Pakistan. Genome Announcements, 2015, 3, .	0.8	2
113	Evaluation of transmission potential and pathobiological characteristics of mallard originated Avian orthoavulavirus 1 (sub-genotype VII.2) in commercial broilers. Microbial Pathogenesis, 2019, 137, 103785.	2.9	1
114	Duckling short beak and dwarfism syndrome virus infection activates host innate immune response involving both DNA and RNA sensors. Microbial Pathogenesis, 2020, 138, 103816.	2.9	1
115	VP2 virusâ€like particles elicit protective immunity against duckling short beak and dwarfism syndrome in ducks. Transboundary and Emerging Diseases, 2021, , .	3.0	1
116	Immunogenicity and efficacy of a bivalent vaccine against infectious bronchitis virus. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 77, 101670.	1.6	1
117	Pathology of Peste des Petits Ruminants Virus Infection in Small Ruminants and Concurrent Infections. , 2015, , 119-131.		1
118	Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines, 2022, 10, 259.	4.4	1
119	Meeting Report: Global Alliance for Research on Avian Diseases 2018, International Conference, January 17 to 19, 2018, Hanoi, Vietnam, Avian Diseases, 2018, 63, 268,	1.0	0