
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477768/publications.pdf Version: 2024-02-01

M R PHRIN

#	Article	IF	CITATIONS
1	An Eulerian model for orthotropic elasticity and inelasticity applied to injection-moulded low-density polyethylene. Mechanics of Materials, 2022, 167, 104239.	1.7	2
2	Anisotropy of a discrete fiber icosahedron model for fibrous tissues exhibited for large deformations. Mechanics of Soft Materials, 2022, 4, 1.	0.4	0
3	Eulerian constitutive equations for the coupled influences of anisotropic yielding, the Bauschinger effect and the strength-differential effect for plane stress. International Journal of Solids and Structures, 2022, 241, 111475.	1.3	13
4	Regularization of localization due to material softening using a nonlocal hardening variable in an Eulerian formulation of inelasticity. International Journal of Engineering Science, 2022, 176, 103684.	2.7	0
5	An approximate contact pressure for normal penetration of rigid ogive projectiles into metal targets. International Journal of Impact Engineering, 2022, 168, 104307.	2.4	1
6	Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint sets—Part I: Mesoscale simulations. International Journal of Impact Engineering, 2021, 151, 103747.	2.4	3
7	Continuum Mechanics with Eulerian Formulations of Constitutive Equations. Solid Mechanics and Its Applications, 2021, , .	0.1	12
8	Modeling the dynamic response of rock masses with multiple compliant fluid saturated joint setsÂ-ÂPart II: Continuum modeling. International Journal of Impact Engineering, 2021, 150, 103746.	2.4	0
9	An Eulerian thermomechanical elastic–viscoplastic model with isotropic and directional hardening applied to computational welding mechanics. Acta Mechanica, 2021, 232, 189-218.	1.1	8
10	Modeling orthotropic elastic-inelastic response of growing tissues with application to stresses in arteries. Mechanics of Soft Materials, 2021, 3, 1.	0.4	3
11	Modeling inelastic spin of microstructural vectors in sheet metal forming. International Journal of Solids and Structures, 2021, 225, 111067.	1.3	8
12	A simplified and modified model for long rod penetration based on ovoids of Rankine. International Journal of Impact Engineering, 2021, 156, 103927.	2.4	1
13	An elastic–inelastic model for dry friction with a smooth transition. International Journal of Engineering Science, 2021, 168, 103546.	2.7	2
14	A Nonlinear Viscoelastic Contact Interphase Modeled as a Cosserat Rod-Like String. Journal of Elasticity, 2021, 146, 237-259.	0.9	2
15	A Hyperelastic Model for Soft Polymer Foam Including Micromechanics of Porosity. Journal of Elasticity, 2020, 138, 205-220.	0.9	3
16	Equivalence of a Constrained Cosserat Theory and Antman's Special Cosserat Theory of a Rod. Journal of Elasticity, 2020, 140, 39-47.	0.9	1
17	Influence of thermal recovery on predictions of the residual mechanical state during melting and solidification. Mechanics of Materials, 2020, 141, 103258.	1.7	3
18	A thermomechanical breakage model for shock-loaded granular media. Journal of the Mechanics and Physics of Solids, 2020, 137, 103813.	2.3	9

#	Article	IF	CITATIONS
19	The fundamental assumptions of cavity expansion models for penetration - revisited. International Journal of Impact Engineering, 2020, 146, 103723.	2.4	8
20	Analysis of material instability of a smooth elastic-inelastic transition model. International Journal of Solids and Structures, 2020, 193-194, 39-53.	1.3	2
21	Pure Shearing and Pure Distortional Deformations Are Not Equivalent. Journal of Elasticity, 2020, 142, 383-393.	0.9	1
22	Invariance Under Superposed Rigid Body Motions with Constraints. Journal of Elasticity, 2020, 142, 83-88.	0.9	4
23	A strongly objective expression for the average deformation rate with application to numerical integration algorithms. Finite Elements in Analysis and Design, 2020, 175, 103409.	1.7	9
24	New Classes of Traveling Waves in a Planar Kirchhoff Beam with Nonlinear Bending Stiffness. Journal of Elasticity, 2020, 140, 197-211.	0.9	0
25	A strongly objective, robust integration algorithm for Eulerian evolution equations modeling general anisotropic elastic-inelastic material response. Finite Elements in Analysis and Design, 2020, 177, 103422.	1.7	6
26	Modeling anisotropic inelastic effects in sheet metal forming using microstructural vectors—Part I: Theory. International Journal of Plasticity, 2020, 134, 102783.	4.1	26
27	A simple scalar directional hardening model for the Bauschinger effect compared with a tensorial model. Journal of Mechanics of Materials and Structures, 2020, 15, 511-537.	0.4	6
28	An analytical expression for temperature in a thermodynamically consistent model with a Mie-Gruneisen equation for pressure. International Journal of Impact Engineering, 2020, 143, 103612.	2.4	3
29	A ten node tetrahedral Macro-Cosserat Point Element (MCPE): Part II: Nonlinear elastic-viscoplastic materials. Finite Elements in Analysis and Design, 2019, 161, 32-50.	1.7	0
30	An Eulerian formulation of inelasticity: from metal plasticity to growth of biological tissues. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180071.	1.6	8
31	A thermomechanical theory for porous tissues with diffusion of fluid and micromechanical modeling of porosity. Mechanics Research Communications, 2019, 97, 112-122.	1.0	5
32	A new approach to modeling the thermomechanical, orthotropic, elastic-inelastic response of soft materials. Mechanics of Soft Materials, 2019, 1, 1.	0.4	9
33	A ten node tetrahedral Macro-Cosserat Point Element (MCPE): Part I: Isotropic and anisotropic hyperelastic materials. Finite Elements in Analysis and Design, 2019, 154, 1-21.	1.7	3
34	Elastic incompressibility in growing materials - a constraint that does work. Mechanics Research Communications, 2018, 93, 138-140.	1.0	1
35	Invariants for Rari- and Multi-Constant Theories with Generalization to Anisotropy in Biological Tissues. Journal of Elasticity, 2018, 133, 119-127.	0.9	4
36	Influence of unobservable overstress in a rate-independent inelastic loading curve on dynamic necking of a bar. Mechanics of Materials, 2018, 116, 158-168.	1.7	1

#	Article	IF	CITATIONS
37	Nonlinear axisymmetric vibrations of a hyperelastic orthotropic cylinder. International Journal of Non-Linear Mechanics, 2018, 99, 131-143.	1.4	15
38	Free and forced whirling of a string with constant axial angular momentum using Cosserat Point Elements (CPE). International Journal of Solids and Structures, 2018, 152-153, 196-206.	1.3	0
39	Significant differences in the mechanical modeling of confined growth predicted by the Lagrangian and Eulerian formulations. International Journal of Engineering Science, 2018, 129, 63-83.	2.7	5
40	A thermomechanical anisotropic continuum model for geological materials with multiple joint sets. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 1366-1388.	1.7	4
41	Chest Wall Kinematics Using Triangular Cosserat Point Elements in Healthy and Neuromuscular Subjects. Annals of Biomedical Engineering, 2017, 45, 1963-1973.	1.3	5
42	A new approach to modeling early cardiac morphogenesis during c-looping. International Journal of Engineering Science, 2017, 117, 1-19.	2.7	7
43	A new analysis of stresses in arteries based on an Eulerian formulation of growth in tissues. International Journal of Engineering Science, 2017, 118, 40-55.	2.7	11
44	Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity. Computational Mechanics, 2017, 60, 703-707.	2.2	9
45	A thermomechanical anisotropic model for shock loading of elastic-plastic and elastic-viscoplastic materials with application to jointed rock. Computational Mechanics, 2016, 58, 107-128.	2.2	11
46	Unphysical properties of the rotation tensor estimated by least squares optimization with specific application to biomechanics. International Journal of Engineering Science, 2016, 103, 11-18.	2.7	9
47	Essential physics of target inertia in penetration problems missed by cavity expansion models. International Journal of Impact Engineering, 2016, 98, 97-104.	2.4	29
48	An Invariant-Based Ogden-Type Model for Incompressible Isotropic Hyperelastic Materials. Journal of Elasticity, 2016, 125, 63-71.	0.9	6
49	Seven Invariants Are Needed to Characterize General Orthotropic Elastic Materials: A Comment on [Shariff, J. Elast., 110:237–241 (2013)]. Journal of Elasticity, 2016, 123, 253-254.	0.9	4
50	A viscoplastic model for the active component in cardiac muscle. Biomechanics and Modeling in Mechanobiology, 2016, 15, 965-982.	1.4	6
51	Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements. Annals of Biomedical Engineering, 2016, 44, 1181-1190.	1.3	15
52	A rate-independent crystal plasticity model with a smooth elastic–plastic transition and no slip indeterminacy. European Journal of Mechanics, A/Solids, 2016, 55, 278-288.	2.1	28
53	Time-dependent behavior of passive skeletal muscle. Continuum Mechanics and Thermodynamics, 2016, 28, 561-577.	1.4	3
54	An Eulerian formulation for large deformations of anisotropic elastic and viscoelastic solids and viscoelastic solids and viscous fluids. Continuum Mechanics and Thermodynamics, 2016, 28, 515-522.	1.4	3

#	Article	IF	CITATIONS
55	A unified theoretical structure for modeling interstitial growth and muscle activation in soft tissues. International Journal of Engineering Science, 2015, 90, 1-26.	2.7	23
56	A nonlinear Cosserat interphase model for residual stresses in an inclusion and the interphase that bonds it to an infinite matrix. International Journal of Solids and Structures, 2015, 62, 186-206.	1.3	15
57	Reciprocal theorem for a linear elastic Cosserat interphase with general geometry. Mathematics and Mechanics of Solids, 2015, 20, 301-308.	1.5	0
58	An Eulerian formulation of nonlinear thermomechanics and electrodynamics of moving anisotropic elastic solids. International Journal of Engineering Science, 2015, 97, 69-83.	2.7	2
59	Modeling damage in silicon carbide due to an impact stress below the HEL. International Journal of Impact Engineering, 2014, 65, 174-184.	2.4	6
60	An anisotropic discrete fiber model with dissipation for soft biological tissues. Mechanics of Materials, 2014, 68, 217-227.	1.7	7
61	A six node plane strain triangular Cosserat Point Element (CPE) for nonlinear elasticity. International Journal of Engineering Science, 2014, 74, 118-142.	2.7	3
62	The effect of radial inertia on flow localization in ductile rods subjected to dynamic extension. International Journal of Impact Engineering, 2014, 69, 157-164.	2.4	4
63	Modeling rate-independent hysteresis in large deformations of preconditioned soft tissues. International Journal of Solids and Structures, 2014, 51, 3265-3272.	1.3	9
64	Soft Tissue Artifact compensation using Triangular Cosserat Point Elements (TCPEs). International Journal of Engineering Science, 2014, 85, 1-9.	2.7	11
65	Cosserat interphase models for elasticity with application to the interphase bonding a spherical inclusion to an infinite matrix. International Journal of Solids and Structures, 2014, 51, 462-477.	1.3	17
66	Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Computational Mechanics, 2013, 52, 649-667.	2.2	57
67	A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials. Computational Mechanics, 2013, 52, 257-285.	2.2	20
68	A Cosserat point element (CPE) for the numerical solution of transient large planar motions of elastic–plastic and elastic–viscoplastic beams. Computational Mechanics, 2013, 51, 217-236.	2.2	1
69	A Bernoulli equation for potential flow of incompressible materials with an inherent material characteristic length. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120641.	1.0	2
70	An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. International Journal of Engineering Science, 2012, 60, 66-76.	2.7	21
71	Cosserat point element (CPE) for finite deformation of orthotropic elastic materials. Computational Mechanics, 2012, 49, 525-544.	2.2	8
72	Removal of unphysical arbitrariness in constitutive equations for elastically anisotropic nonlinear elastic–viscoplastic solids. International Journal of Engineering Science, 2012, 53, 38-45.	2.7	40

#	Article	IF	CITATIONS
73	Analytical formulas for penetration of a long rigid projectile including the effect of cavitation. International Journal of Impact Engineering, 2012, 40-41, 1-9.	2.4	15
74	Further Developments of Physically Based Invariants forÂNonlinear Elastic Orthotropic Solids. Journal of Elasticity, 2011, 103, 289-294.	0.9	11
75	A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1793-1811.	1.0	27
76	A large deformation breakage model of granular materials including porosity and inelastic distortional deformation rate. International Journal of Engineering Science, 2011, 49, 1151-1169.	2.7	53
77	Failures of the threeâ€dimensional patch test for large elastic deformations. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1618-1624.	1.0	2
78	Arithmetic and geometric solutions for average rigid-body rotation. Mechanism and Machine Theory, 2010, 45, 1239-1251.	2.7	34
79	Coupled Nonlinear Thermoelastic Equations for an Orthotropic Beam with Thermal and Viscous Dissipation. , 2010, , 103-115.		Ο
80	Brittleness of fracture in flowing magma. Journal of Geophysical Research, 2010, 115, .	3.3	20
81	A 3-D brick Cosserat Point Element (CPE) for nonlinear elasticity. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2010, , 83-140.	0.3	2
82	Using Cosserat Point Theory for Estimating Kinematics and Soft-Tissue Deformation During Gait Analysis. , 2010, , 63-70.		1
83	Accuracy and Robustness of a 3-D Brick Cosserat Point Element (CPE) for Finite Elasticity. Advanced Structured Materials, 2010, , 255-269.	0.3	Ο
84	An improved Cosserat point element for axisymmetric problems in nonlinear elasticity: Comparison with other element formulations. Communications in Numerical Methods in Engineering, 2009, 25, 81-99.	1.3	0
85	Separation and velocity dependence of the drag force applied to a rigid ovoid of Rankine nosed projectile penetrating an elastic–perfectly-plastic target. International Journal of Impact Engineering, 2009, 36, 1012-1018.	2.4	26
86	Analysis of Constitutive Assumptions for the Strain Energy of a Generalized Elastic Membrane inÂaÂNonlinear Contact Problem. Journal of Elasticity, 2009, 97, 77-95.	0.9	2
87	Physically Based Invariants for Nonlinear Elastic Orthotropic Solids. Journal of Elasticity, 2008, 90, 1-18.	0.9	24
88	A Cosserat point element (CPE) for nearly planar problems (including thickness changes) in nonlinear elasticity. International Journal of Engineering Science, 2008, 46, 986-1010.	2.7	5
89	A simplified implicit Newmark integration scheme for finite rotations. Computers and Mathematics With Applications, 2007, 53, 219-231.	1.4	10
90	Postbuckling response and ultimate strength of a compressed rectangular elastic plate using a 3-D Cosserat brick element. European Journal of Mechanics, A/Solids, 2007, 26, 348-362.	2.1	1

#	Article	IF	CITATIONS
91	A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. International Journal of Non-Linear Mechanics, 2007, 42, 216-232.	1.4	15
92	Dynamic lateral torsional post-buckling of a beam-mass system: Experiments. Journal of Sound and Vibration, 2007, 299, 1049-1073.	2.1	3
93	Dynamic lateral torsional post-buckling of a beam–mass system: Theory. Journal of Sound and Vibration, 2007, 303, 832-857.	2.1	5
94	Simulations of dynamic crack propagation in brittle materials using nodal cohesive forces and continuum damage mechanics in the distinct element code LDEC. International Journal of Fracture, 2007, 144, 131-147.	1.1	14
95	Influence of Membrane Stresses on Postbuckling of Rectangular Plates Using a Nonlinear Elastic 3-D Cosserat brick Element. Computational Mechanics, 2007, 39, 729-740.	2.2	3
96	Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Computational Mechanics, 2007, 40, 447-459.	2.2	26
97	An improved 3-D brick Cosserat point element for irregular shaped elements. Computational Mechanics, 2007, 40, 979-1004.	2.2	22
98	Modified torsion coefficients for a 3-D brick Cosserat point element. Computational Mechanics, 2007, 41, 517-525.	2.2	12
99	Heat conduction between confocal elliptical surfaces using the theory of a Cosserat shell. International Journal of Solids and Structures, 2006, 43, 295-306.	1.3	3
100	Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis. International Journal of Impact Engineering, 2006, 33, 463-473.	2.4	87
101	Three-dimensional free vibrations of a circular arch using the theory of a Cosserat point. Journal of Sound and Vibration, 2005, 286, 799-816.	2.1	13
102	Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Computational Mechanics, 2005, 36, 255-265.	2.2	52
103	Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Computational Mechanics, 2005, 36, 266-288.	2.2	16
104	Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues. Biomechanics and Modeling in Mechanobiology, 2005, 4, 178-189.	1.4	29
105	Numerical Solution Procedures for Nonlinear Elastic Curved Rods Using the Theory of a Cosserat Point. Mathematics and Mechanics of Solids, 2005, 10, 89-126.	1.5	4
106	Analysis of blank thickening in deep drawing processes using the theory of a Cosserat generalized membrane. Journal of the Mechanics and Physics of Solids, 2004, 52, 317-340.	2.3	7
107	A Cosserat shell model for interphases in elastic media. Journal of the Mechanics and Physics of Solids, 2004, 52, 1023-1052.	2.3	70
108	Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell. International Journal of Solids and Structures, 2004, 41, 7009-7033.	1.3	12

#	Article	IF	CITATIONS
109	Post-Buckling Behavior of Nonlinear Elastic Beams and Three-Dimensional Frames Using the Theory of a Cosserat Point. Mathematics and Mechanics of Solids, 2004, 9, 369-398.	1.5	12
110	Buckling of Elastic Shallow Arches Using the Theory of a Cosserat Point. Journal of Engineering Mechanics - ASCE, 2004, 130, 216-224.	1.6	26
111	Simulations of underground structures subjected to dynamic loading using the distinct element method. Engineering Computations, 2004, 21, 384-408.	0.7	35
112	A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. International Journal of Solids and Structures, 2003, 40, 4585-4614.	1.3	84
113	Thermomechanical constitutive equations for the dynamic response of ceramics. International Journal of Solids and Structures, 2003, 40, 4519-4548.	1.3	20
114	A thermodynamically consistent large deformation elastic–viscoplastic model with directional tensile failure. International Journal of Solids and Structures, 2003, 40, 4299-4318.	1.3	14
115	Determination of hourglass coefficients in the theory of a Cosserat point for nonlinear elastic beams. International Journal of Solids and Structures, 2003, 40, 6163-6188.	1.3	12
116	On the Quest for the Best Timoshenko Shear Coefficient. Journal of Applied Mechanics, Transactions ASME, 2003, 70, 154-157.	1.1	13
117	A generalized formula for the penetration depth of a deformable projectile. International Journal of Impact Engineering, 2002, 27, 387-398.	2.4	20
118	Porous compaction as the mechanism causing the Hugoniot Elastic Limit. International Journal of Impact Engineering, 2002, 27, 509-520.	2.4	6
119	Penetration of a rigid projectile into a multi-layered target: theory and numerical computations. International Journal of Engineering Science, 2002, 40, 1381-1401.	2.7	18
120	A three-dimensional nonlinear model for dissipative response of soft tissue. International Journal of Solids and Structures, 2002, 39, 5081-5099.	1.3	114
121	Cosserat Theories: Shells, Rods and Points. Solid Mechanics and its Applications, Vol 79. Applied Mechanics Reviews, 2002, 55, B109-B110.	4.5	12
122	Penetration of a rigid projectile into a finite thickness elastic–plastic target — comparison between theory and numerical computations. International Journal of Impact Engineering, 2001, 25, 265-290.	2.4	16
123	Normal penetration of an eroding projectile into an elastic–plastic target. International Journal of Impact Engineering, 2001, 25, 573-597.	2.4	23
124	On the theory of a Cosserat point and shear locking in thin beams. Communications in Numerical Methods in Engineering, 2001, 17, 201-213.	1.3	8
125	Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point. International Journal of Solids and Structures, 2001, 38, 4395-4437.	1.3	32

A Simple Derivation of Cosserat Theories of Shells, Rods and Points. , 2001, , 277-294.

3

#	Article	IF	CITATIONS
127	An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive Systems. Journal of Mechanical Design, Transactions of the ASME, 2000, 122, 311-316.	1.7	51
128	Mechanical and numerical modeling of a porous elastic–viscoplastic material with tensile failure. International Journal of Solids and Structures, 2000, 37, 1841-1871.	1.3	54
129	Cosserat Theories: Shells, Rods and Points. Solid Mechanics and Its Applications, 2000, , .	0.1	226
130	Oblique penetration of a rigid projectile into a thick elastic–plastic target: theory and experiment. International Journal of Impact Engineering, 1999, 22, 707-726.	2.4	39
131	An Elastic–Viscoplastic Model for Excised Facial Tissues. Journal of Biomechanical Engineering, 1998, 120, 686-689.	0.6	37
132	Oblique penetration of a rigid projectile into an elastic-plastic target. International Journal of Impact Engineering, 1997, 19, 769-795.	2.4	46
133	An intrinsic formulation for nonlinear elastic rods. International Journal of Solids and Structures, 1997, 34, 4191-4212.	1.3	10
134	Modeling added compressibility of porosity and the thermomechanical response of wet porous rock with application to Mt. Helen Tuff. International Journal of Solids and Structures, 1996, 33, 761-793.	1.3	22
135	CALCULATION OF HYPERELASTIC RESPONSE OF FINITELY DEFORMED ELASTIC-VISCOPLASTIC MATERIALS. International Journal for Numerical Methods in Engineering, 1996, 39, 309-320.	1.5	60
136	NUMERICAL SOLUTIONS OF FORCED VIBRATION AND WHIRLING OF A NON-LINEAR STRING USING THE THEORY OF A COSSERAT POINT. Journal of Sound and Vibration, 1996, 197, 85-101.	2.1	18
137	On the treatment of elastic deformation in finite elastic-viscoplastic theory. International Journal of Plasticity, 1996, 12, 951-965.	4.1	39
138	Restrictions on nonlinear constitutive equations for elastic rods. Journal of Elasticity, 1996, 44, 9-36.	0.9	27
139	An incremental elastic-viscoplastic theory indicating a reduced modulus for non-proportional buckling. International Journal of Solids and Structures, 1995, 32, 2967-2987.	1.3	11
140	A new representation for the strain energy of anisotropic elastic materials with application to damage evolution in brittle materials. Mechanics of Materials, 1995, 19, 171-192.	1.7	16
141	Restrictions on nonlinear constitutive equations for elastic shells. Journal of Elasticity, 1995, 39, 33-163.	0.9	31
142	Penetration of a rigid projectile into an elastic-plastic target of finite thickness. International Journal of Impact Engineering, 1995, 16, 801-831.	2.4	70
143	Continuum model of dispersion caused by an inherent material characteristic length. Journal of Applied Physics, 1995, 77, 4054-4063.	1.1	69
144	Numerical solution of two- and three-dimensional thermomechanical problems using the theory of a Cosserat point. , 1995, , 308-334.		14

#	Article	IF	CITATIONS
145	Modeling of hardening at very high strain rates. Journal of Applied Physics, 1994, 76, 2742-2747.	1.1	31
146	Plasticity theory formulated in terms of physically based microstructural variables—Part II. Examples. International Journal of Solids and Structures, 1994, 31, 2635-2652.	1.3	33
147	Plasticity theory formulated in terms of physically based microstructural variables—Part I. Theory. International Journal of Solids and Structures, 1994, 31, 2615-2634.	1.3	95
148	Isotropy of Strain Energy Functions Which Depend Only on a Finite Number of Directional Strain Measures. Journal of Applied Mechanics, Transactions ASME, 1994, 61, 284-289.	1.1	20
149	On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. Journal of Non-Newtonian Fluid Mechanics, 1993, 50, 79-88.	1.0	16
150	Analytical modelling of second order effects in large deformation plasticity. International Journal of Solids and Structures, 1992, 29, 2235-2258.	1.3	10
151	Hyperbolic heat conduction and the second law. International Journal of Engineering Science, 1992, 30, 1665-1676.	2.7	91
152	Simple, Convenient Isotropic Failure Surface. Journal of Engineering Mechanics - ASCE, 1991, 117, 348-369.	1.6	46
153	Universal Relations for Elastically Isotropic Elastic-Plastic Materials. Journal of Applied Mechanics, Transactions ASME, 1991, 58, 283-285.	1.1	10
154	The significance of projection operators in the spectral representation of symmetric second order tensors. Computer Methods in Applied Mechanics and Engineering, 1990, 84, 243-246.	3.4	30
155	On the significance of normal cross-sectional extension in beam theory with application to contact problems. International Journal of Solids and Structures, 1989, 25, 249-265.	1.3	56
156	The significance of pure measures of distortion in nonlinear elasticity with reference to the Poynting problem. Journal of Elasticity, 1988, 20, 53-64.	0.9	8
157	An Elastic-Viscoplastic Model for Metals Subjected to High Compression. Journal of Applied Mechanics, Transactions ASME, 1987, 54, 532-538.	1.1	27
158	An elastic-viscoplastic model exhibiting continuity of solid and fluid states. International Journal of Engineering Science, 1987, 25, 1175-1191.	2.7	43
159	On the numerical solution of non-linear string problems using the theory of a Cosserat point. International Journal of Solids and Structures, 1987, 23, 335-349.	1.3	10
160	Some nonlinear three-dimensional motions of an elastic string. Physica D: Nonlinear Phenomena, 1986, 19, 433-439.	1.3	8
161	Heat conduction in plates and shells with emphasis on a conical shell. International Journal of Solids and Structures, 1986, 22, 527-551.	1.3	15
162	An elastic-viscoplastic model for large deformation. International Journal of Engineering Science, 1986, 24, 1083-1095.	2.7	25

#	Article	IF	CITATIONS
163	Free Vibration of a Rectangular Parallelepiped Using the Theory of a Cosserat Point. Journal of Applied Mechanics, Transactions ASME, 1986, 53, 45-50.	1.1	25
164	On the Theory of a Cosserat Point and Its Application to the Numerical Solution of Continuum Problems. Journal of Applied Mechanics, Transactions ASME, 1985, 52, 368-372.	1.1	78
165	On the Numerical Solution of One-Dimensional Continuum Problems Using the Theory of a Cosserat Point. Journal of Applied Mechanics, Transactions ASME, 1985, 52, 373-378.	1.1	48
166	Motion of a nonlinear string: Some exact solutions to an old problem. Physical Review A, 1985, 31, 3480-3482.	1.0	13
167	Constrained theories of rods. Journal of Elasticity, 1984, 14, 343-361.	0.9	50
168	On the Squat of a Ship. Journal of Ship Research, 1984, 28, 107-117.	0.5	22
169	On the transition to planing of a boat. Journal of Fluid Mechanics, 1981, 103, 345.	1.4	25
170	On inviscid flow in a waterfall. Journal of Fluid Mechanics, 1981, 103, 375.	1.4	33