Fan Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4777353/publications.pdf

Version: 2024-02-01

117571 98753 8,009 64 34 67 citations h-index g-index papers 67 67 67 14120 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders. New England Journal of Medicine, 2013, 369, 1502-1511.	13.9	1,717
2	Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing. JAMA - Journal of the American Medical Association, 2014, 312, 1870.	3.8	1,171
3	Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. New England Journal of Medicine, 2017, 376, 21-31.	13.9	565
4	Use of Exome Sequencing for Infants in Intensive Care Units. JAMA Pediatrics, 2017, 171, e173438.	3. 3	348
5	Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell, 2016, 165, 566-579.	13.5	324
6	Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nature Communications, 2016, 7, 10713.	5 . 8	227
7	Reanalysis of Clinical Exome Sequencing Data. New England Journal of Medicine, 2019, 380, 2478-2480.	13.9	205
8	Quantitative real-time imaging of glutathione. Nature Communications, 2017, 8, 16087.	5 . 8	192
9	Molecular diagnostic experience of whole-exome sequencing in adult patients. Genetics in Medicine, 2016, 18, 678-685.	1.1	186
10	Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Medicine, 2017, 9, 26.	3 . 6	184
11	USP7 Acts as a Molecular Rheostat to Promote WASH-Dependent Endosomal Protein Recycling and Is Mutated in a Human Neurodevelopmental Disorder. Molecular Cell, 2015, 59, 956-969.	4.5	175
12	Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nature Medicine, 2019, 25, 439-447.	15.2	160
13	Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. American Journal of Human Genetics, 2016, 99, 831-845.	2.6	146
14	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	2.6	136
15	Heterozygous De Novo and Inherited Mutations in the Smooth Muscle Actin (ACTG2) Gene Underlie Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome. PLoS Genetics, 2014, 10, e1004258.	1.5	122
16	Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Medicine, 2018, 10, 74.	3.6	105
17	Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. American Journal of Human Genetics, 2016, 98, 1001-1010.	2.6	102
18	Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. American Journal of Human Genetics, 2016, 98, 347-357.	2.6	98

#	Article	IF	Citations
19	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. American Journal of Human Genetics, 2017, 100, 128-137.	2.6	96
20	The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genetics in Medicine, 2017, 19, 45-52.	1.1	94
21	Mutations in PURA Cause Profound Neonatal Hypotonia, Seizures, and Encephalopathy in 5q31.3 Microdeletion Syndrome. American Journal of Human Genetics, 2014, 95, 579-583.	2.6	92
22	De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. American Journal of Human Genetics, 2017, 100, 352-363.	2.6	86
23	Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Medical Genomics, 2016, 9, 42.	0.7	80
24	Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genetics, 2017, 13, e1006905.	1.5	80
25	Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation. American Journal of Human Genetics, 2017, 100, 91-104.	2.6	72
26	The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Genetics in Medicine, 2017, 19, 936-944.	1.1	70
27	IRF2BPL Is Associated with Neurological Phenotypes. American Journal of Human Genetics, 2018, 103, 245-260.	2.6	69
28	De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome. American Journal of Human Genetics, 2015, 97, 904-913.	2.6	65
29	Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. American Journal of Human Genetics, 2018, 102, 985-994.	2.6	59
30	De Novo Truncating Mutations in AHDC1 in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apnea. American Journal of Human Genetics, 2014, 94, 784-789.	2.6	57
31	A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing. Genome Medicine, 2019, 11, 48.	3.6	55
32	A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genetics, 2016, 12, e1005848.	1.5	50
33	Mutations in GPAA1, Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia. American Journal of Human Genetics, 2017, 101, 856-865.	2.6	49
34	Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15. Human Molecular Genetics, 2019, 28, 2900-2919.	1.4	46
35	MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Medicine, 2016, 8, 106.	3.6	43
36	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	5.8	43

#	Article	IF	CITATIONS
37	Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies. Genetics in Medicine, 2019, 21, 1797-1807.	1.1	41
38	Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations. Nature Genetics, 2017, 49, 613-617.	9.4	40
39	Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders. Genome Medicine, 2017, 9, 73.	3.6	39
40	Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features. Human Genetics, 2017, 136, 377-386.	1.8	36
41	CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genetics in Medicine, 2020, 22, 1633-1641.	1.1	36
42	Disruptive variants of <i>CSDE1</i> associate with autism and interfere with neuronal development and synaptic transmission. Science Advances, 2019, 5, eaax2166.	4.7	35
43	Gain-of-Function Mutations in <i>RARB < /i>Cause Intellectual Disability with Progressive Motor Impairment. Human Mutation, 2016, 37, 786-793.</i>	1.1	34
44	The phenotypic spectrum of Xiaâ€Gibbs syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 1315-1326.	0.7	34
45	FHF1 (FGF12) epileptic encephalopathy. Neurology: Genetics, 2016, 2, e115.	0.9	32
46	Olfaction Modulates Reproductive Plasticity through Neuroendocrine Signaling in Caenorhabditis elegans. Current Biology, 2015, 25, 2284-2289.	1.8	30
47	Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism. Molecular Autism, 2019, 10, 35.	2.6	30
48	Exonic rearrangements in <i>DMD</i> in Chinese Han individuals affected with Duchenne and Becker muscular dystrophies. Human Mutation, 2020, 41, 668-677.	1.1	29
49	Congenital heart defects and left ventricular non-compaction in males with loss-of-function variants in <i>NONO</i> . Journal of Medical Genetics, 2017, 54, 47-53.	1.5	24
50	A Recurrent De Novo Nonsense Variant in ZSWIM6 Results in Severe Intellectual Disability without Frontonasal or Limb Malformations. American Journal of Human Genetics, 2017, 101, 995-1005.	2.6	23
51	<i>PSTPIP1</i> àâ€associated myeloidâ€related proteinemia inflammatory syndrome: A rare cause of childhood neutropenia associated with systemic inflammation and hyperzincemia. Pediatric Blood and Cancer, 2019, 66, e27439.	0.8	23
52	Homozygous variants in <i>pyrrolineâ€5 arboxylate reductase 2</i> (<i>PYCR2</i>) in patients with progressive microcephaly and hypomyelinating leukodystrophy. American Journal of Medical Genetics, Part A, 2017, 173, 460-470.	0.7	20
53	Inactivation of <i>AMMECR1</i> is associated with growth, bone, and heart alterations. Human Mutation, 2018, 39, 281-291.	1.1	15
54	Biallelic loss of function variants in <i>PPP1R21</i> cause a neurodevelopmental syndrome with impaired endocytic function. Human Mutation, 2019, 40, 267-280.	1.1	15

#	Article	IF	CITATIONS
55	Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability. PLoS ONE, 2017, 12, e0175962.	1.1	14
56	Variants in SCAF4 Cause a Neurodevelopmental Disorder and Are Associated with Impaired mRNA Processing. American Journal of Human Genetics, 2020, 107, 544-554.	2.6	13
57	Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease–associated loci for BAFopathies. Genetics in Medicine, 2022, 24, 364-373.	1.1	12
58	A de novo variant in the human HIST1H4J gene causes a syndrome analogous to the HIST1H4C-associated neurodevelopmental disorder. European Journal of Human Genetics, 2020, 28, 674-678.	1.4	11
59	Characterization of the renal phenotype in RMND1 â€related mitochondrial disease. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e973.	0.6	10
60	Heterozygous variants in SPTBN1 cause intellectual disability and autism. American Journal of Medical Genetics, Part A, 2021, 185, 2037-2045.	0.7	9
61	<scp><i>PPP3CA</i></scp> truncating variants clustered in the regulatory domain cause earlyâ€onset refractory epilepsy. Clinical Genetics, 2021, 100, 227-233.	1.0	7
62	RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability. Brain, 2020, 143, e31-e31.	3.7	6
63	Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. Cerebellum, 2022, , 1.	1.4	5
64	Pathogenic Mutations in Cancer-Predisposing Genes: A Survey of 300 Patients with Whole-Genome Sequencing and Lifetime Electronic Health Records. PLoS ONE, 2016, 11, e0167847.	1.1	4