
Murali Krishna Chilakapati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4777285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BSA-drug-ZnO-PEI conjugates interaction with glycans of gp60 endothelial cell receptor protein for targeted drug delivery: a comprehensive spectroscopic study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9253-9269.	2.0	2
2	Effect of Cold Atmospheric Plasma Jet and Gamma Radiation Treatments on Gingivobuccal Squamous Cell Carcinoma and Breast Adenocarcinoma Cells. Plasma Chemistry and Plasma Processing, 2022, 42, 163-178.	1.1	6
3	Growth Kinetics Monitoring of Gram-Negative Pathogenic Microbes Using Raman Spectroscopy. Applied Spectroscopy, 2022, 76, 1263-1271.	1.2	3
4	Development of integrated microfluidic platform coupled with Surface-enhanced Raman Spectroscopy for diagnosis of COVID-19. Medical Hypotheses, 2021, 146, 110356.	0.8	55
5	Salivary Raman Spectroscopy: Standardization of Sampling Protocols and Stratification of Healthy and Oral Cancer Subjects. Applied Spectroscopy, 2021, 75, 581-588.	1.2	5
6	Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells (MCF-7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and Multivariate Curve Resolution Analysis. International Journal of Molecular Sciences, 2021, 22, 800.	1.8	11
7	Risk prediction by Raman spectroscopy for disease-free survival in oral cancers. Lasers in Medical Science, 2021, 36, 1691-1700.	1.0	1
8	Distinct stratification of normal liver, hepatocellular carcinoma (HCC), and anticancer nanomedicine-treated- tumor tissues by Raman fingerprinting for HCC therapeutic monitoring. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102352.	1.7	3
9	DNA Fingerprint Analysis of Raman Spectra Captures Global Genomic Alterations in Imatinib-Resistant Chronic Myeloid Leukemia: A Potential Single Assay for Screening Imatinib Resistance. Cells, 2021, 10, 2506.	1.8	4
10	Raman micro-spectroscopic map estimating in vivo precision of tumor ablative effect achieved by photothermal therapy procedure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102437.	1.7	1
11	Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. Applied Spectroscopy, 2020, 74, 553-562.	1.2	12
12	Emerging Advanced Technologies Developed by IPR for Bio Medical Applications ‑.A Review. Neurology India, 2020, 68, 26.	0.2	2
13	Quality assessment of cryopreserved biospecimens reveals presence of intact biomolecules. Journal of Biophotonics, 2019, 12, e201960048.	1.1	3
14	Raman exfoliative cytology for prognosis prediction in oral cancers: A proof of concept study. Journal of Biophotonics, 2019, 12, e201800334.	1.1	21
15	Rapid Discrimination of Malaria- and Dengue-Infected Patients Sera Using Raman Spectroscopy. Analytical Chemistry, 2019, 91, 7054-7062.	3.2	29
16	Exploring the effect of vitamin E in cancer chemotherapy—A biochemical and biophysical insight. Journal of Biophotonics, 2018, 11, e201800104.	1.1	6
17	Exploration of Raman exfoliated cytology for oral and cervical cancers. Vibrational Spectroscopy, 2018, 98, 35-40.	1.2	12
18	Identification of morphological and biochemical changes in keratinâ€8/18 knockâ€down cells using Raman spectroscopy. Journal of Biophotonics, 2017, 10, 1377-1384.	1.1	7

#	Article	IF	CITATIONS
19	Water Concentration Analysis of the Surgical Margin—Letter. Cancer Research, 2017, 77, 3121-3122.	0.4	0
20	In vivo Raman spectroscopy–assisted early identification of potential second primary/recurrences in oral cancers: An exploratory study. Head and Neck, 2017, 39, 2216-2223.	0.9	32
21	Raman exfoliative cytology for oral precancer diagnosis. Journal of Biomedical Optics, 2017, 22, 1.	1.4	20
22	Optical diagnostics in oral cancer: An update on Raman spectroscopic applications. Journal of Cancer Research and Therapeutics, 2017, 13, 908-915.	0.3	7
23	<i>In vivo</i> subsite classification and diagnosis of oral cancers using Raman spectroscopy. Journal of Innovative Optical Health Sciences, 2016, 09, 1650017.	0.5	25
24	Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population. Scientific Reports, 2016, 6, 26538.	1.6	22
25	Raman spectroscopy in experimental oral carcinogenesis: investigation of abnormal changes in control tissues. Journal of Raman Spectroscopy, 2016, 47, 1318-1326.	1.2	10
26	Raman Spectroscopy of Experimental Oral Carcinogenesis. Technology in Cancer Research and Treatment, 2016, 15, NP60-NP72.	0.8	21
27	Perspectives of optical coherence tomography imaging and Raman spectroscopy in cancer diagnosis. Biomedical Spectroscopy and Imaging, 2015, 4, 35-55.	1.2	5
28	Raman spectroscopy of serum: A study on oral cancers. Biomedical Spectroscopy and Imaging, 2015, 4, 171-187.	1.2	11
29	Transcutaneous <i>in vivo</i> Raman spectroscopy of breast tumors and pretumors. Journal of Raman Spectroscopy, 2015, 46, 1053-1061.	1.2	5
30	Oral cancer screening: serum Raman spectroscopic approach. Journal of Biomedical Optics, 2015, 20, 115006.	1.4	31
31	Raman spectroscopy of serum: A study on â€~pre' and â€~post' breast adenocarcinoma resection in rat models. Journal of Biophotonics, 2015, 8, 575-583.	1.1	8
32	Recurrence prediction in oral cancers: a serum Raman spectroscopy study. Analyst, The, 2015, 140, 2294-2301.	1.7	60
33	Raman spectroscopy in cervical cancers: An update. Journal of Cancer Research and Therapeutics, 2015, 11, 10.	0.3	24
34	Raman spectroscopy and cytopathology of oral exfoliated cells for oral cancer diagnosis. Analytical Methods, 2015, 7, 7548-7559.	1.3	34
35	A preliminary Raman spectroscopic study of urine: diagnosis of breast cancer in animal models. Analyst, The, 2015, 140, 456-466.	1.7	20
36	Investigating the effects of Pentoxifylline on human breast cancer cells using Raman spectroscopy. Journal of Innovative Optical Health Sciences, 2015, 08, 1550004.	0.5	12

#	Article	IF	CITATIONS
37	Raman Spectroscopic Study of Radioresistant Oral Cancer Sublines Established by Fractionated Ionizing Radiation. PLoS ONE, 2014, 9, e97777.	1.1	42
38	Fluorescence spectroscopic characterization of salivary metabolites of oral cancer patients. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 153-160.	1.7	50
39	Raman spectroscopic studies of oral cancers: correlation of spectral and biochemical markers. Analytical Methods, 2014, 6, 8613-8620.	1.3	19
40	Swiss bare mice: a suitable model for transcutaneous in vivo Raman spectroscopic studies of breast cancer. Lasers in Medical Science, 2014, 29, 325-333.	1.0	31
41	In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst, The, 2013, 138, 4175.	1.7	85
42	RAMAN SPECTROSCOPIC STUDY ON PREDICTION OF TREATMENT RESPONSE IN CERVICAL CANCERS. Journal of Innovative Optical Health Sciences, 2013, 06, 1350014.	0.5	13
43	Transcutaneous <i>in vivo</i> Raman spectroscopic studies in a mouse model: evaluation of changes in the breast associated with pregnancy and lactation. Journal of Biomedical Optics, 2013, 18, 047004.	1.4	7
44	Raman spectroscopic study on classification of cervical cell specimens. Vibrational Spectroscopy, 2013, 68, 115-121.	1.2	39
45	Characterization and Diagnosis of Cancer by Native Fluorescence Spectroscopy of Human Urine. Photochemistry and Photobiology, 2013, 89, 483-491.	1.3	27
46	Transcutaneous in vivo Raman spectroscopy: Detection of age-related changes in mouse breast. Vibrational Spectroscopy, 2013, 67, 80-86.	1.2	8
47	Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst, The, 2013, 138, 4161.	1.7	110
48	Raman mapping studies of human ectocervical tissue. , 2013, , .		0
49	Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study. PLoS ONE, 2013, 8, e78921.	1.1	56
50	Raman Spectroscopy of Oral Buccal Mucosa: A Study on Age-Related Physiological Changes and Tobacco-Related Pathological Changes. Technology in Cancer Research and Treatment, 2012, 11, 529-541.	0.8	39
51	<i>In vivo</i> Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. Journal of Biomedical Optics, 2012, 17, 1050021.	1.4	103
52	Raman spectroscopy in head and neck cancers: Toward oncological applications. Journal of Cancer Research and Therapeutics, 2012, 8, 126.	0.3	20
53	Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies. Journal of Biomedical Optics, 2011, 16, 127004.	1.4	37
54	Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario. Journal of Biomedical Optics, 2011, 16, 025003.	1.4	53

#	Article	IF	CITATIONS
55	Raman Spectroscopic Methods for Classification of Normal and Malignant Hypopharyngeal Tissues: An Exploratory Study. Pathology Research International, 2011, 2011, 1-9.	1.4	12
56	Raman spectroscopy for less invasive and online medical applications. , 2010, , .		1
57	Predictive and Prognostic Significance of Glutathione Levels and DNA Damage in Cervix Cancer Patients Undergoing Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2010, 78, 343-349.	0.4	20
58	Protein profile study of breastâ€ŧissue homogenates by HPLC‣IF. Journal of Biophotonics, 2009, 2, 313-321.	1.1	3
59	Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: A spectral deconvolution study. Biopolymers, 2009, 91, 539-546.	1.2	48
60	Serum protein profile studies of cervical cancers in monitoring of tumor response to radiotherapy using HPLC-LIF: A pilot study. Medical Laser Application: International Journal for Laser Treatment and Research, 2009, 24, 165-174.	0.4	1
61	Autofluorescence of Breast Tissues: Evaluation of Discriminating Algorithms for Diagnosis of Normal, Benign, and Malignant Conditions. Photomedicine and Laser Surgery, 2009, 27, 241-252.	2.1	18
62	Raman spectroscopic diagnosis of breast cancers: evaluation of models. Journal of Raman Spectroscopy, 2008, 39, 1276-1282.	1.2	12
63	Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: A pilot study. Biopolymers, 2008, 89, 530-537.	1.2	54
64	Raman spectroscopy of breast tissues. Expert Review of Molecular Diagnostics, 2008, 8, 149-166.	1.5	37
65	Diagnosis of Ovarian Cancer by Raman Spectroscopy: A Pilot Study. Photomedicine and Laser Surgery, 2008, 26, 83-90.	2.1	35
66	An overview on applications of optical spectroscopy in cervical cancers. Journal of Cancer Research and Therapeutics, 2008, 4, 26.	0.3	27
67	Discrimination of Normal and Malignant Mucosal Tissues of the Colon by Raman Spectroscopy. Photomedicine and Laser Surgery, 2007, 25, 269-274.	2.1	77
68	Vibrational spectroscopy studies of formalin-fixed cervix tissues. Biopolymers, 2007, 85, 214-221.	1.2	33
69	Discrimination of normal and malignant stomach mucosal tissues by Raman spectroscopy: A pilot study. Vibrational Spectroscopy, 2007, 44, 382-387.	1.2	23
70	Surface-enhanced Raman scattering of methyl p-hydroxy benzoate: A molecular orientational study. Laser Physics, 2007, 17, 1217-1221.	0.6	3
71	FTIR and Raman microspectroscopy of normal, benign, and malignant formalin-fixed ovarian tissues. Analytical and Bioanalytical Chemistry, 2007, 387, 1649-1656.	1.9	85
72	Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vibrational Spectroscopy, 2006, 41, 136-141.	1.2	95

#	Article	IF	CITATIONS
73	Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study. Laser Physics, 2006, 16, 1253-1263.	0.6	11
74	Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study. Biopolymers, 2006, 81, 179-193.	1.2	280
75	Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers, 2006, 82, 462-470.	1.2	74
76	Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers, 2006, 83, 556-569.	1.2	125
77	Micro-Raman spectroscopy of mixed cancer cell populations. Vibrational Spectroscopy, 2005, 38, 95-100.	1.2	70
78	Evaluation of the suitability of ex vivo handled ovarian tissues for optical diagnosis by Raman microspectroscopy. Biopolymers, 2005, 79, 269-276.	1.2	26
79	Characterisation of uterine sarcoma cell lines exhibiting MDR phenotype by vibrational spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 160-167.	1.1	27
80	Autofluorescence of oral tissue for optical pathology in oral malignancy. Journal of Photochemistry and Photobiology B: Biology, 2004, 73, 49-58.	1.7	46
81	Micro-Raman Spectroscopy for Optical Pathology of Oral Squamous Cell Carcinoma. Applied Spectroscopy, 2004, 58, 1128-1135.	1.2	103
82	Studies on p-nitroacetophenone-sensitized lipid peroxidation. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 47-50.	1.7	3
83	Studies on p-nitroacetophenone triplet state. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 95, 111-113.	2.0	4