Chudong Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776771/publications.pdf Version: 2024-02-01

CHUDONC TONC

#	Article	IF	CITATIONS
1	Distributed Statistical Process Monitoring Based on Four-Subspace Construction and Bayesian Inference. Industrial & Engineering Chemistry Research, 2013, 52, 9897-9907.	3.7	64
2	A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm. IEEE Transactions on Automation Science and Engineering, 2017, 14, 1129-1138.	5.2	61
3	Decentralized Monitoring of Dynamic Processes Based on Dynamic Feature Selection and Informative Fault Pattern Dissimilarity. IEEE Transactions on Industrial Electronics, 2016, 63, 3804-3814.	7.9	53
4	Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring. Control Engineering Practice, 2017, 58, 34-41.	5.5	51
5	Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach. Chemometrics and Intelligent Laboratory Systems, 2017, 161, 34-42.	3.5	46
6	Improved ICA for process monitoring based on ensemble learning and Bayesian inference. Chemometrics and Intelligent Laboratory Systems, 2014, 135, 141-149.	3.5	42
7	Distributed partial least squares based residual generation for statistical process monitoring. Journal of Process Control, 2019, 75, 77-85.	3.3	38
8	Statistical process monitoring based on a multi-manifold projection algorithm. Chemometrics and Intelligent Laboratory Systems, 2014, 130, 20-28.	3.5	37
9	Sparse Robust Principal Component Analysis with Applications to Fault Detection and Diagnosis. Industrial & Engineering Chemistry Research, 2019, 58, 1300-1309.	3.7	37
10	Double-layer ensemble monitoring of non-gaussian processes using modified independent component analysis. ISA Transactions, 2017, 68, 181-188.	5.7	30
11	Statistical process monitoring based on nonlocal and multiple neighborhoods preserving embedding model. Journal of Process Control, 2018, 65, 34-40.	3.3	24
12	Statistical process monitoring based on orthogonal multi-manifold projections and a novel variable contribution analysis. ISA Transactions, 2016, 65, 407-417.	5.7	23
13	Fault detection and isolation in hybrid process systems using a combined dataâ€driven and observerâ€design methodology. AICHE Journal, 2014, 60, 2805-2814.	3.6	21
14	Double-Weighted Independent Component Analysis for Non-Gaussian Chemical Process Monitoring. Industrial & Engineering Chemistry Research, 2013, 52, 14396-14405.	3.7	20
15	Improvements to the <i>T</i> ² Statistic for Multivariate Fault Detection. Industrial & Engineering Chemistry Research, 2019, 58, 20692-20709.	3.7	17
16	Nonlinear process monitoring based on decentralized generalized regression neural networks. Expert Systems With Applications, 2020, 150, 113273.	7.6	17
17	Energy demand management for process systems through production scheduling and control. AICHE Journal, 2015, 61, 3756-3769.	3.6	16
18	KPI relevant and irrelevant fault monitoring with neighborhood component analysis and two-level PLS. Journal of the Franklin Institute, 2018, 355, 8049-8064.	3.4	15

CHUDONG TONG

#	Article	IF	CITATIONS
19	Soft sensing of non-Gaussian processes using ensemble modified independent component regression. Chemometrics and Intelligent Laboratory Systems, 2016, 157, 120-126.	3.5	14
20	Dynamic statistical process monitoring based on generalized canonical variate analysis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 78-86.	5.3	14
21	Multivariate Fault Detection and Diagnosis Based on Variable Grouping. Industrial & Engineering Chemistry Research, 2020, 59, 7693-7705.	3.7	11
22	Decentralized Modified Autoregressive Models for Fault Detection in Dynamic Processes. Industrial & amp; Engineering Chemistry Research, 2018, 57, 15794-15802.	3.7	10
23	Statistical monitoring for non-Gaussian processes based on MICA-KDR method. ISA Transactions, 2019, 94, 164-173.	5.7	10
24	Double monitoring of common and specific features for multimode process. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 730-741.	1.5	9
25	Distributed Statistical Process Monitoring Based on Multiblock Canonical Correlation Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 1193-1201.	3.7	9
26	A multigroup framework for fault detection and diagnosis in large-scale multivariate systems. Journal of Process Control, 2021, 100, 65-79.	3.3	9
27	A missing variable approach for decentralized statistical process monitoring. ISA Transactions, 2018, 81, 8-17.	5.7	8
28	Canonical correlation analysis-based explicit relation discovery for statistical process monitoring. Journal of the Franklin Institute, 2020, 357, 5004-5018.	3.4	8
29	Fault detection based on auto-regressive extreme learning machine for nonlinear dynamic processes. Applied Soft Computing Journal, 2021, 106, 107319.	7.2	8
30	Statistical process monitoring based on ensemble structure analysis. IEEE/CAA Journal of Automatica Sinica, 2024, , 1-8.	13.1	7
31	Statistical process monitoring based on just-in-time feature analysis. Control Engineering Practice, 2021, 115, 104889.	5.5	7
32	Dissimilarity-Based Fault Diagnosis through Ensemble Filtering of Informative Variables. Industrial & Engineering Chemistry Research, 2016, 55, 8774-8783.	3.7	6
33	Dynamic process monitoring based on a time-serial multi-block modeling approach. Journal of Process Control, 2020, 89, 22-29.	3.3	6
34	Multivariate statistical process monitoring based on principal discriminative component analysis. Journal of the Franklin Institute, 2021, 358, 7900-7915.	3.4	6
35	A multigroup fault detection and diagnosis framework for large-scale industrial systems using nonlinear multivariate analysis. Expert Systems With Applications, 2022, 206, 117859.	7.6	6
36	Sparse PARAFAC2 decomposition: Application to fault detection and diagnosis in batch processes. Chemometrics and Intelligent Laboratory Systems, 2019, 195, 103893.	3.5	5

CHUDONG TONG

# Ar	RTICLE	IF	CITATIONS
37 A Er	Multigroup Fault Detection and Diagnosis Scheme for Multivariate Systems. Industrial & ngineering Chemistry Research, 2020, 59, 20767-20778.	3.7	5
38 Dy Joi	ynamic statistical process monitoring based on online dynamic discriminative feature analysis. Jurnal of Process Control, 2021, 103, 67-75.	3.3	5
39 Dy m	ynamic process monitoring based on orthogonal dynamic inner neighborhood preserving embedding 10del. Chemometrics and Intelligent Laboratory Systems, 2019, 193, 103812.	3.5	4
40 Ev	volutionary optimization with adaptive surrogates and its application in crude oil distillation. , 2016,		2
41 A Va	Decomposition Scheme for Integration of Production Scheduling and Control: Demand Response to arying Electricity Prices. Industrial & Engineering Chemistry Research, 2017, 56, 8917-8926.	3.7	2