Sawanta S Mali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technology, 2013, 249, 456-462.	4.2	220
2	Cation distribution, structural, morphological and magnetic properties of Co _{1â^'x} Zn _x Fe ₂ O ₄ (x = 0–1) nanoparticles. RSC Advances, 2015, 5, 2338-2345.	3.6	184
3	Ultrathin Atomic Layer Deposited TiO ₂ for Surface Passivation of Hydrothermally Grown 1D TiO ₂ Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 1541-1551.	6.7	170
4	Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 32-38.	3.9	169
5	Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 2017, 423, 641-674.	6.1	152
6	In situ processed gold nanoparticle-embedded TiO ₂ nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 2016, 8, 2664-2677.	5.6	143
7	p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8, 10528-10540.	5.6	125
8	Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73, 735-740.	4.0	118
9	Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Materials, 2015, 7, e208-e208.	7.9	117
10	Low-Cost Electrospun Highly Crystalline Kesterite Cu ₂ ZnSnS ₄ Nanofiber Counter Electrodes for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 1688-1696.	8.0	112
11	Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Scientific Reports, 2015, 5, 11424.	3.3	112
12	Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells. Matter, 2021, 4, 635-653.	10.0	109
13	Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale, 2018, 10, 4987-5034.	5.6	108
14	Aâ€5ite Rubidium Cationâ€Incorporated CsPbI ₂ Br Allâ€Inorganic Perovskite Solar Cells Exceeding 17% Efficiency. Solar Rrl, 2020, 4, 2000164.	5.8	107
15	Nanostructured TiO ₂ Sensitized with MoS ₂ Nanoflowers for Enhanced Photodegradation Efficiency toward Methyl Orange. ACS Omega, 2021, 6, 17071-17085.	3.5	106
16	Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: Characterization and application. Electrochimica Acta, 2012, 66, 216-221.	5.2	105
17	Novel method for fabrication of room temperature polypyrrole–ZnO nanocomposite NO2 sensor. Measurement: Journal of the International Measurement Confederation, 2012, 45, 1989-1996.	5.0	103
18	Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness. Applied Surface Science, 2011, 257, 2647-2656.	6.1	102

#	Article	IF	CITATIONS
19	Hot-Air-Assisted Fully Air-Processed Barium Incorporated CsPbI ₂ Br Perovskite Thin Films for Highly Efficient and Stable All-Inorganic Perovskite Solar Cells. Nano Letters, 2019, 19, 6213-6220.	9.1	102
20	Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21, 483-500.	14.2	99
21	Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties. Scientific Reports, 2013, 3, 3004.	3.3	97
22	Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 294, 130-136.	3.9	96
23	Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO ₂ electron transporting layers. Nanoscale, 2017, 9, 3095-3104.	5.6	92
24	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	7.0	83
25	PbS quantum dot sensitized anatase TiO2 nanocorals for quantum dot-sensitized solar cell applications. Dalton Transactions, 2012, 41, 6130.	3.3	82
26	Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Applied Surface Science, 2011, 257, 9737-9746.	6.1	79
27	Synthesis, Characterization of Hydrothermally Grown MWCNT–TiO ₂ Photoelectrodes and Their Visible Light Absorption Properties. ECS Journal of Solid State Science and Technology, 2012, 1, M15-M23.	1.8	76
28	Eosin-Y and N3-Dye sensitized solar cells (DSSCs) based on novel nanocoral TiO2: A comparative study. Electrochimica Acta, 2012, 59, 113-120.	5.2	74
29	Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 2014, 73, 290-295.	3.1	74
30	CSA doped polyaniline/CdS organic–inorganic nanohybrid: Physical and gas sensing properties. Ceramics International, 2012, 38, 5501-5506.	4.8	73
31	Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films. Electrochimica Acta, 2013, 102, 358-368.	5.2	73
32	Novel Synthesis and Characterization of Mesoporous ZnO Nanofibers by Electrospinning Technique. ACS Sustainable Chemistry and Engineering, 2013, 1, 1207-1213.	6.7	73
33	In-situ synthesis of Cu(OH)2 and CuO nanowire electrocatalysts for methanol electro-oxidation. Materials Letters, 2017, 187, 60-63.	2.6	72
34	Hydrothermal synthesis of rutile TiO2 nanoflowers using BrÃ,nsted Acidic Ionic Liquid [BAIL]: Synthesis, characterization and growth mechanism. CrystEngComm, 2012, 14, 1920.	2.6	71
35	Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI ₂ Br for Stable All-Inorganic Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 778-788.	17.4	71
36	Hydrothermal synthesis of rutile TiO2 with hierarchical microspheres and their characterization. CrystEngComm, 2011, 13, 6349.	2.6	69

#	Article	IF	CITATIONS
37	CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochemical and Photobiological Sciences, 2011, 10, 1652-1658.	2.9	69
38	High performing smart electrochromic device based on honeycomb nanostructured h-WO ₃ thin films: hydrothermal assisted synthesis. Dalton Transactions, 2015, 44, 2788-2800.	3.3	69
39	Low temperature aqueous chemical synthesis of CdS sensitized ZnO nanorods. Materials Letters, 2011, 65, 548-551.	2.6	66
40	Photoluminescence of zinc oxide nanopowder synthesized by a combustion method. Powder Technology, 2011, 208, 185-188.	4.2	66
41	Reduced graphene oxide (rGO) grafted zinc stannate (Zn2SnO4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12158-12169.	10.3	65
42	Transmission attenuation and chromic contrast characterization of R.F. sputtered WO3 thin films for electrochromic device applications. Electrochimica Acta, 2012, 85, 501-508.	5.2	64
43	Highly efficient thermally stable perovskite solar cells via Cs:NiO /CuSCN double-inorganic hole extraction layer interface engineering. Materials Today, 2019, 26, 8-18.	14.2	64
44	Development of nanocoral-like Cd(SSe) thin films using an arrested precipitation technique and their application. New Journal of Chemistry, 2014, 38, 5964-5974.	2.8	62
45	Simultaneous Improved Performance and Thermal Stability of Planar Metal Ion Incorporated CsPbI ₂ Br Allâ€Inorganic Perovskite Solar Cells Based on MgZnO Nanocrystalline Electron Transporting Layer. Advanced Energy Materials, 2020, 10, 1902708.	19.5	61
46	Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure. Electrochimica Acta, 2016, 203, 74-83.	5.2	60
47	Surfactant free microwave assisted synthesis of ZnO microspheres: Study of their antibacterial activity. Applied Surface Science, 2014, 307, 495-502.	6.1	57
48	Morphology-controlled synthesis and enhanced energy product (BH) _{max} of CoFe ₂ O ₄ nanoparticles. New Journal of Chemistry, 2018, 42, 15793-15802.	2.8	57
49	Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Materials Science in Semiconductor Processing, 2015, 40, 523-526.	4.0	56
50	Electrodeposition of nano-granular tungsten oxide thin films for smart window application. Materials Letters, 2014, 134, 298-301.	2.6	54
51	Hybridization of Co ₃ O ₄ and î±-MnO ₂ Nanostructures for High-Performance Nonenzymatic Glucose Sensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 13248-13261.	6.7	54
52	A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 2019, 11, 21824-21833.	5.6	53
53	Photoelectrochemical properties of CdS sensitized ZnO nanorod arrays: Effect of nanorod length. Journal of Applied Physics, 2012, 112, .	2.5	52
54	Effective light harvesting in CdS nanoparticle-sensitized rutile TiO2 microspheres. Electrochimica Acta, 2013, 90, 666-672.	5.2	52

#	Article	IF	CITATIONS
55	Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures. Electrochimica Acta, 2014, 117, 470-479.	5.2	51
56	Synthesis of SnO ₂ nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale, 2018, 10, 8275-8284.	5.6	51
57	Bio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31280-31290.	8.0	51
58	Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochimica Acta, 2011, 58, 556-561.	5.2	48
59	Microwave-assisted rapid synthesis of highly porous TiO 2 thin films with nanocrystalline framework for efficient photoelectrochemical conversion. Electrochimica Acta, 2014, 143, 89-97.	5.2	48
60	Hydrothermal synthesis of WO3 nanoflowers on etched ITO and their electrochromic properties. Electrochimica Acta, 2017, 246, 1112-1120.	5.2	48
61	Synthesis of cadmium sulfide spongy balls with nanoconduits for effective light harvesting. Electrochimica Acta, 2011, 56, 2762-2768.	5.2	47
62	Polyaniline based electrodes for electrochemical supercapacitor: Synergistic effect of silver, activated carbon and polyaniline. Journal of Electroanalytical Chemistry, 2014, 724, 21-28.	3.8	47
63	In2O3 nanocapsules for rapid photodegradation of crystal violet dye under sunlight. Journal of Colloid and Interface Science, 2020, 561, 287-297.	9.4	47
64	Limitations of dual and complementary inorganic–organic electrochromic device for smart window application and its colorimetric analysis. Synthetic Metals, 2011, 161, 1105-1112.	3.9	46
65	Low temperature growth of CuS nanoparticles by reflux condensation method. Progress in Solid State Chemistry, 2011, 39, 108-113.	7.2	46
66	Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: effect of chelating agents. New Journal of Chemistry, 2013, 37, 2821.	2.8	46
67	From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: All Hydrothermal Process. Scientific Reports, 2014, 4, 5451.	3.3	45
68	A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells. Nanoscale, 2016, 8, 19189-19194.	5.6	45
69	Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants. Journal of Solid State Electrochemistry, 2012, 16, 253-263.	2.5	43
70	Single-step synthesis of 3D nanostructured TiO2 as a scattering layer for vertically aligned 1D nanorod photoanodes and their dye-sensitized solar cell properties. CrystEngComm, 2013, 15, 5660.	2.6	42
71	Novel synthesis of interconnected nanocubic PbS thin films by facile aqueous chemical route. Journal of Materials Science: Materials in Electronics, 2014, 25, 3762-3770.	2.2	42
72	Antiâ€Solvent Assisted Crystallization Processed Methylammonium Bismuth Iodide Cuboids towards Highly Stable Leadâ€Free Perovskite Solar Cells. ChemistrySelect, 2017, 2, 1578-1585.	1.5	42

#	Article	IF	CITATIONS
73	Hybrid Physicochemical Synthesis and Electrochromic Performance of WO ₃ /MoO ₃ Thin Films. Electroanalysis, 2014, 26, 2388-2397.	2.9	41
74	Colloidal stability of polyethylene glycol functionalized Co0.5Zn0.5Fe2O4 nanoparticles: effect of pH, sample and salt concentration for hyperthermia application. RSC Advances, 2014, 4, 12662.	3.6	41
75	PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application. Materials Characterization, 2015, 102, 209-220.	4.4	41
76	Polymer assisted deposition of electrochromic tungsten oxide thin films. Journal of Alloys and Compounds, 2010, 493, 335-339.	5.5	40
77	Single step hydrothermal synthesis of hierarchical TiO ₂ microflowers with radially assembled nanorods for enhanced photovoltaic performance. RSC Advances, 2014, 4, 47278-47286.	3.6	40
78	Synthesis of nanoporous Mo:BiVO ₄ thin film photoanodes using the ultrasonic spray technique for visible-light water splitting. Nanoscale Advances, 2019, 1, 799-806.	4.6	40
79	Photoelectrocatalysis of Cefotaxime Using Nanostructured TiO ₂ Photoanode: Identification of the Degradation Products and Determination of the Toxicity Level. Industrial & Engineering Chemistry Research, 2014, 53, 18152-18162.	3.7	38
80	A Merrifield resin supported Pd–NHC complex with a spacer(Pd–NHC@SP–PS) for the Sonogashira coupling reaction under copper- and solvent-free conditions. New Journal of Chemistry, 2015, 39, 2333-2341.	2.8	38
81	Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route. Dalton Transactions, 2013, 42, 16961.	3.3	37
82	Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceramics International, 2013, 39, 323-330.	4.8	37
83	Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers. Energy, 2019, 189, 116396.	8.8	37
84	Reduced methylammonium triple-cation Rb _{0.05} (FAPbI ₃) _{0.95} (MAPbBr ₃) _{0.05} perovskite solar cells based on a TiO ₂ /SnO ₂ bilayer electron transport layer approaching a stabilized 21% efficiency: the role of antisolvents. Journal of Materials Chemistry A,	10.3	37
85	2019, 7, 17516-17528. Gas sensing properties of 3D mesoporous nanostructured ZnO thin films. New Journal of Chemistry, 2018, 42, 13573-13580.	2.8	35
86	Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films. RSC Advances, 2012, 2, 2100.	3.6	34
87	Simplistic toxic to non-toxic hydrothermal route to synthesize Cu2ZnSnS4 nanoparticles for solar cell applications. Solar Energy, 2015, 122, 1146-1153.	6.1	34
88	A facile and low cost strategy to synthesize Cd _{1â^'x} Zn _x Se thin films for photoelectrochemical performance: effect of zinc content. RSC Advances, 2015, 5, 55658-55668.	3.6	33
89	Effect of substrate on the nanostructured Bi2Se3 thin films for solar cell applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 2385-2393.	2.2	33
90	Pseudocapacitive-battery-like behavior of cobalt manganese nickel sulfide (CoMnNiS) nanosheets grown on Ni-foam by electrodeposition for realizing high capacity. RSC Advances, 2018, 8, 40198-40209.	3.6	33

#	Article	IF	CITATIONS
91	Efficient and Stable All-Inorganic Niobium-Incorporated CsPbI ₂ Br-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27176-27183.	8.0	33
92	Boosting the Stability of Fully-Inorganic Perovskite Solar Cells through Samarium Doped CsPbI ₂ Br Perovskite. ACS Sustainable Chemistry and Engineering, 2020, 8, 16364-16371.	6.7	32
93	Facile designing and assessment of photovoltaic performance of hydrothermally grown kesterite Cu2ZnSnS4 thin films: Influence of deposition time. Solar Energy, 2020, 201, 102-115.	6.1	32
94	Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films. Journal of Alloys and Compounds, 2011, 509, 1729-1733.	5.5	31
95	TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. Optical Materials, 2017, 73, 781-792.	3.6	31
96	Farming of ZnO nanorod-arrays via aqueous chemical route for photoelectrochemical solar cell application. Ceramics International, 2012, 38, 6461-6467.	4.8	30
97	Evaluation of various diameters of titanium oxide nanofibers for efficient dye sensitized solar cells synthesized by electrospinning technique: A systematic study and their application. Electrochimica Acta, 2015, 166, 356-366.	5.2	30
98	Hollow In2O3 microcubes for sensitive and selective detection of NO2 gas. Journal of Alloys and Compounds, 2019, 806, 726-736.	5.5	30
99	Gallium Cationic Incorporated Compact TiO2 as an Efficient Electron-Transporting Layer for Stable Perovskite Solar Cells. Matter, 2019, 1, 452-464.	10.0	30
100	Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 304-316.	2.2	29
101	Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection. Journal of Materials Science, 2018, 53, 6094-6105.	3.7	29
102	Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Chargeâ€Transporting Layers. ChemSusChem, 2019, 12, 4724-4753.	6.8	29
103	Microwave assisted synthesis, characterization and thermoelectric properties of nanocrystalline copper antimony selenide thin films. RSC Advances, 2014, 4, 51632-51639.	3.6	28
104	Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance. RSC Advances, 2015, 5, 26923-26931.	3.6	28
105	A Dualâ€Retarded Reaction Processed Mixedâ€Cation Perovskite Layer for Highâ€Efficiency Solar Cells. Advanced Functional Materials, 2019, 29, 1807420.	14.9	28
106	Efficient dye-sensitized solar cells based on hierarchical rutile TiO2 microspheres. CrystEngComm, 2012, 14, 8156.	2.6	27
107	Terbiumâ€Doped and Dualâ€Passivated γâ€CsPb(I _{1â^'} <i>_x</i> Br <i>_x</i>) ₃ Inorganic Perovskite Solar Cells with Improved Air Thermal Stability and High Efficiency. Advanced Materials, 2022, 34, e2203204.	21.0	27
108	Simplistic surface active agents mediated morphological tweaking of CdS thin films for photoelectrochemical solar cell performance. Current Applied Physics, 2014, 14, 1669-1676.	2.4	26

#	Article	IF	CITATIONS
109	Simplistic construction of cadmium sulfoselenide thin films via a hybrid chemical process for enhanced photoelectrochemical performance. RSC Advances, 2015, 5, 40283-40296.	3.6	26
110	Designing of novel efficient photoactive ternary Zn1-xCu2xSe thin film materials via hydrothermal route: Photoelectrochemical (PEC) cell study. Materials Science in Semiconductor Processing, 2020, 105, 104727.	4.0	26
111	Ionic liquid assisted synthesis of h-MoO3 hollow microrods and their application for electrochemical sensing of Imidacloprid pesticide in vegetables. Journal of Molecular Liquids, 2021, 324, 115119.	4.9	26
112	Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods. Journal of Materials Science: Materials in Electronics, 2014, 25, 4501-4511.	2.2	25
113	Synthesis of SnS2 thin film via non vacuum arrested precipitation technique for solar cell application. Materials Letters, 2016, 180, 23-26.	2.6	25
114	Synthesis of a nanostructured rutile TiO ₂ electron transporting layer via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 12340-12353.	10.3	25
115	Development of Pt-Carbon catalysts using MCM-41 template for HI decomposition reaction in S–I thermochemical cycle. International Journal of Hydrogen Energy, 2012, 37, 3602-3611.	7.1	24
116	Fully-inorganic strontium incorporated CsPbI2Br perovskite solar cells with promoted efficiency and stability. Journal of Energy Chemistry, 2021, 62, 451-458.	12.9	24
117	Thermoelectric Properties of Indium(III)â€Doped Copper Antimony Selenide Thin Films Deposited Using a Microwaveâ€Assisted Technique. Energy Technology, 2016, 4, 835-842.	3.8	23
118	Hydrothermally grown 3D hierarchical TiO2 based on electrochemically anodized 1D TiO2 nanostructure for supercapacitor. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	23
119	Highly reliable multilevel resistive switching in a nanoparticulated In ₂ O ₃ thin-film memristive device. Journal Physics D: Applied Physics, 2019, 52, 175306.	2.8	23
120	Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films. Journal of Solid State Electrochemistry, 2012, 16, 25-33.	2.5	22
121	Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application. Journal of Materials Science: Materials in Electronics, 2014, 25, 5606-5617.	2.2	22
122	Tuning the analog and digital resistive switching properties of TiO2 by nanocompositing Al-doped ZnO. Materials Science in Semiconductor Processing, 2020, 115, 105110.	4.0	22
123	Structural, morphological, and optical studies of hydrothermally synthesized Nb-added TiO2 for DSSC application. Ceramics International, 2021, 47, 25580-25592.	4.8	22
124	Thermoelectric properties of nanocrystalline Cu3SbSe4 thin films deposited by a self-organized arrested precipitation technique. New Journal of Chemistry, 2015, 39, 5661-5668.	2.8	21
125	Photocurrent enhancement in a Cu ₂ Cd(SSe) ₂ photoanode synthesized via an arrested precipitation route. New Journal of Chemistry, 2016, 40, 3277-3288.	2.8	21
126	Influence of disordered morphology on electrochromic stability of WO3/PPy. Journal of Alloys and Compounds, 2016, 669, 240-245.	5.5	21

#	Article	lF	CITATIONS
127	A â€~ <i>Smart-Bottle</i> ' humidifier-assisted air-processed CuSCN inorganic hole extraction layer towards highly-efficient, large-area and thermally-stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10246-10255.	10.3	21
128	Surfactant assisted approach to development of efficient WO3 photoanode for natural dye sensitized solar cell. Solar Energy, 2021, 220, 371-383.	6.1	21
129	Synthesis and characterization of spray pyrolyzed nanocrystalline CeO2–SiO2 thin films as passive counter electrodes. Solar Energy Materials and Solar Cells, 2010, 94, 781-787.	6.2	20
130	Effect of surfactant on optical and structural properties of chemically deposited MoBi2S5 thin films. New Journal of Chemistry, 2012, 36, 1807.	2.8	20
131	Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core–shell heterogeneous film and its improved photovoltaic performance. Optical Materials, 2014, 37, 766-772.	3.6	20
132	Influence of laser repetition rate on the Cu2ZnSn(SSe)4 thin films synthesized via pulsed laser deposition technique. Solar Energy Materials and Solar Cells, 2016, 157, 331-336.	6.2	20
133	Large area, waterproof, air stable and cost effective efficient perovskite solar cells through modified carbon hole extraction layer. Materials Today Chemistry, 2017, 4, 53-63.	3.5	20
134	Chalcogenide nanocomposite electrodes grown by chemical etching of Niâ€foam as electrocatalyst for efficient oxygen evolution reaction. International Journal of Energy Research, 2020, 44, 1233-1243.	4.5	20
135	Fabrication of enhanced sensitive and selective porous indium oxide nanocube sensor for NO2 detection. Ceramics International, 2021, 47, 2430-2440.	4.8	20
136	Synthesis of fibrous reticulate nanocrystalline n-type MoBi2(Se1â^'xTex)5 thin films: Thermocooling applications. Materials Research Bulletin, 2012, 47, 3860-3867.	5.2	19
137	The influence of coating on the structural, magnetic and colloidal properties of LSMO manganite and the heating mechanism for magnetic fluid hyperthermia application. New Journal of Chemistry, 2014, 38, 3678.	2.8	19
138	Synthesis, characterization and photoelectrochemical properties of PbS sensitized vertically aligned ZnO nanorods: modified aqueous route. Journal of Materials Science: Materials in Electronics, 2015, 26, 6897-6906.	2.2	19
139	Enhanced photoelectrochemical performance of novel p-type MoBiCuSe ₄ thin films deposited by a simple surfactant-mediated solution route. RSC Advances, 2016, 6, 24985-24994.	3.6	19
140	Investigating the Role of Selenium-Ion Concentration on Optoelectronic Properties of the Cu ₂ ZnSn(S _{1–<i>x</i>} Se _{<i>x</i>}) ₄ Thin Films. Industrial & Engineering Chemistry Research, 2020, 59, 10868-10881.	3.7	19
141	Fabrication of an electrochromic device by using WO3 thin films synthesized using facile single-step hydrothermal process. Thin Solid Films, 2019, 673, 86-93.	1.8	18
142	Triton-X mediated interconnected nanowalls network of cadmium sulfide thin films via chemical bath deposition and their photoelectrochemical performance. Solid State Sciences, 2014, 36, 41-46.	3.2	17
143	Morphologically controlled electrodeposition of fern shaped Bi2Te3 thin films for photoelectrochemical performance. Journal of Electroanalytical Chemistry, 2015, 758, 178-190.	3.8	17
144	Expanded Polystyrene Beads Coated with Intumescent Flame Retardant Material to Achieve Fire Safety Standards. Polymers, 2021, 13, 2662.	4.5	17

#	Article	IF	CITATIONS
145	Study of Novel WO ₃ -PEDOT:PSS Bilayered Thin Film for Electrochromic Applications. Nanoscience and Nanotechnology Letters, 2012, 4, 1146-1154.	0.4	16
146	Polyvinylpyrrolidone (PVP) assisted singleâ€ s tep synthesis of kesterite Cu ₂ ZnSnS ₄ nanoparticles by solvothermal process. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1050-1054.	2.4	16
147	ZnS passivated PbSe sensitized TiO2 nanorod arrays to suppress photocorrosion in photoelectrochemical solar cells. Materials Today Communications, 2018, 16, 186-193.	1.9	16
148	Efficient mixed halide perovskite solar cells via solvent engineering process. Dyes and Pigments, 2019, 168, 311-316.	3.7	16
149	Influence of vacuum annealing on the structural and photoelectrochemical properties of nanocrystalline MoBi2S5 thin films. Current Applied Physics, 2014, 14, 508-515.	2.4	15
150	Synthesis of functionalized Co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2015, 378, 397-401.	2.3	15
151	Single step synthesized 1D TiO2 vertically aligned nanorod arrays for CdS sensitized quantum dot sensitized solar cells. Ceramics International, 2016, 42, 1973-1981.	4.8	15
152	Nanorods to nanosheets structural evolution of NixZn1-xO for NO2 gas sensing application. Journal of Alloys and Compounds, 2018, 766, 941-951.	5.5	15
153	Influence of reduced graphene oxide-TiO2 composite nanofibers in organic indoline DN350 based dye sensitized solar cells. Synthetic Metals, 2019, 256, 116146.	3.9	15
154	Synthesis and X-ray photoelectron spectroscopy (XPS) and thermoelectric studies of ternary Bi ₂ (Te _{0.5} Se _{0.5}) ₃ mixed-metal chalcogenide thin films by the arrested precipitation technique. Canadian Journal of Chemistry, 2011, 89, 1375-1381.	1.1	14
155	Influence of deposition temperature on the optical, structural, morphological, compositional and photoelectrochemical properties of TiO2 thin films. Journal of Materials Science: Materials in Electronics, 2016, 27, 11739-11750.	2.2	14
156	Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices. Journal of Materials Science: Materials in Electronics, 2016, 27, 4996-5005.	2.2	14
157	Effect of copper content on optostructural, morphological and photoelectrochemical properties of MoBi2â^'x Cu x Se4 thin films. Journal of Materials Science, 2013, 48, 7300-7311.	3.7	13
158	Once again, organometallic tri-halide perovskites. Materials Today, 2015, 18, 172-173.	14.2	13
159	Making air-stable all-inorganic perovskite solar cells through dynamic hot-air. Nano Today, 2020, 33, 100880.	11.9	13
160	Ambient processed and stable all-inorganic lead halide perovskite solar cells with efficiencies nearing 20% using a spray coated Zn1â°'xCsxO electron transport layer. Nano Energy, 2021, 90, 106597.	16.0	13
161	Multistep hydrothermal route for nanocoral architecture of anatase TiO ₂ : synthesis and characterization of dyeâ€sensitized solar cell performance. Progress in Photovoltaics: Research and Applications, 2014, 22, 525-539.	8.1	12
162	Facile hydrothermal assisted synthesis of time dependent Cu2S thin films for efficient photoelectrochemical application. Journal of Materials Science: Materials in Electronics, 2018, 29, 19322-19335.	2.2	12

#	Article	IF	CITATIONS
163	Editors' Choice—Stability of Unstable Perovskites: Recent Strategies for Making Stable Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2019, 8, Q111-Q117.	1.8	12
164	Facile Synthesis of Nanofibrous Polyaniline Thin Films for Ammonia Gas Detection. Journal of Electronic Materials, 2020, 49, 1338-1347.	2.2	12
165	Opto-structural and electrical properties of chemically grown Ga doped MoBi2Se5 thin films. Journal of Materials Science: Materials in Electronics, 2013, 24, 4669-4676.	2.2	11
166	Deposition, characterizations and photoelectrochemical performance of nanocrystalline Cu–In–Cd–S–Se thin films by hybrid chemical process. Journal of Materials Science, 2017, 52, 9709-972	7. ^{3.7}	11
167	Novel ytterbium-doped CsPbI2Br thin-films–based inorganic perovskite solar cells toward improved phase stability. Materials Today Chemistry, 2021, 22, 100557.	3.5	11
168	Synthesis and characterization of planar heterojunction hybrid polymer solar cells based on copper pthalocyanine (CuPc) and titanium dioxide. Ceramics International, 2014, 40, 643-649.	4.8	10
169	Successive ionic layer adsorption and reaction deposited kesterite Cu 2 ZnSnS 4 nanoflakes counter electrodes for efficient dye-sensitized solar cells. Materials Research Bulletin, 2014, 59, 249-253.	5.2	10
170	Bismuth Telluride quantum dot assisted Titanium Oxide microflowers for efficient photoelectrochemical performance. Materials Letters, 2015, 159, 177-181.	2.6	10
171	Enhancement in thermoelectric performance of Cu3SbSe4 thin films by In(III) doping; synthesized by arrested precipitation technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 8793-8800.	2.2	10
172	Chemiresistive ammonia gas sensor based on branched nanofibrous polyaniline thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 11878-11887.	2.2	10
173	Electrochromic properties of electrodeposited tungsten oxide (WO3) thin film. AIP Conference Proceedings, 2012, , .	0.4	9
174	Hydrothermal synthesis of rutile TiO2 bottle brush for efficient dye-sensitized solar cells. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
175	Investigating the light harvesting capacity of sulfur ion concentration dependent SnS2 thin films synthesized by self-assembled arrested precipitation technique. Materials Research Express, 2019, 6, 086467.	1.6	9
176	Reducing Defects of All-Inorganic γ-CsPbI ₂ Br Thin Films by Ethylammonium Bromide Additives for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 25576-25583.	8.0	9
177	Novel hybrid solar cells based on α-copper phthalocyanine–cadmium sulfide planar heterojunction. Journal of Materials Science, 2014, 49, 5100-5111.	3.7	8
178	Synthesis of Ni ²⁺ ion doped ZnO–MWCNTs nanocomposites using an <i>in situ</i> sol–gel method: an ultra sensitive non-enzymatic uric acid sensing electrode material. RSC Advances, 2020, 10, 36949-36961.	3.6	8
179	An approach towards TiO2 chrysanthemum flowers with tunable properties: influence of reaction time in hydrothermal process. Journal of Materials Science: Materials in Electronics, 2015, 26, 6119-6128.	2.2	7
180	Evaluation of a metal free dye for efficient dye sensitized solar cells based on hydrothermally synthesized TiO ₂ nanoflowers. RSC Advances, 2015, 5, 91708-91715.	3.6	7

#	Article	IF	CITATIONS
181	Synthesis of (CdZn)Se thin films by a facile aqueous phase route and their photoelectrochemical performance for solar cell application. Journal of Materials Science: Materials in Electronics, 2016, 27, 5867-5877.	2.2	7
182	Structural, morphological, and wettability study of electrochemically anodized 1D TiO2 nanotube arrays. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	7
183	New insights into active-area-dependent performance of hybrid perovskite solar cells. Journal of Materials Science, 2019, 54, 10825-10835.	3.7	7
184	Optoelectronic and Photovoltaic Properties of the Cu ₂ ZnSnS ₄ Photocathode by a Temperature-Dependent Facile Hydrothermal Route. Industrial & Engineering Chemistry Research, 2021, 60, 7816-7825.	3.7	7
185	Influence of Tin Doped TiO2 Nanorods on Dye Sensitized Solar Cells. Materials, 2021, 14, 6282.	2.9	7
186	Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive. Cell Reports Physical Science, 2022, 3, 100906.	5.6	7
187	Secondary Hydrothermally Processed Engineered Titanium Dioxide Nanostructures for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1775-1787.	3.8	6
188	Novel synthetic route for the synthesis of ternary Cd(SSe) photoelectrode and their photoelectrochemical application. Journal of Materials Science: Materials in Electronics, 2017, 28, 2984-2995.	2.2	6
189	Arrested precipitation assembly of nanosheets Cu2ZnCd (S, Se)3 thin film for solar cell performance: Novel skilful synthesis. Materials Letters, 2018, 217, 215-218.	2.6	6
190	Electrospun TiO2 nanofibers for metal free indoline dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 12555-12565.	2.2	6
191	Electrochemically Anodized Ultralong TiO2 Nanotubes for Supercapacitors. Journal of Electronic Materials, 2019, 48, 873-878.	2.2	6
192	Electrodeposited bimetallic microporous <scp>MnCu</scp> oxide electrode as a highly stable electrocatalyst for oxygen evolution reaction. International Journal of Energy Research, 2022, 46, 5269-5279.	4.5	6
193	Boosting the Performance of ZnO/CdS Coreâ€Shell Nanorod Arrayâ€based Solar Cells by ZnS Surface Treatment. Israel Journal of Chemistry, 2015, 55, 1011-1016.	2.3	5
194	Synthesis of Bismuth Telluride Thin Film for Thermoelectric Application Via Electrodeposition Technique. Macromolecular Symposia, 2016, 361, 152-155.	0.7	5
195	Microwave assisted novel MoBi2S5 nanoflowers: Synthesis, characterization, photoelectrochemical performance. Solid State Sciences, 2016, 61, 89-93.	3.2	5
196	Investigations on Nanocomposites of Silver Nanosticks and Polyaniline for Supercapacitor Application. Journal of Nanoscience and Nanotechnology, 2017, 17, 4194-4199.	0.9	5
197	Effect of molybdenum content on the optostructural, morphological and photoelectrochemical properties of Bi2Se3Thin films. AIP Conference Proceedings, 2018, , .	0.4	5
198	Formation of Kirkendall void of lead-sulfide cubes. Materials Today, 2020, 40, 266-267.	14.2	5

#	Article	IF	CITATIONS
199	Effect of indium (III) content on photoelectrochemical performance of MoBi(2â^'x)InxS5 thin films. Solid State Sciences, 2014, 35, 10-17.	3.2	4
200	Hierarchical SnO2 microspheres prepared by hydrothermal process for efficient improvement of dye-sensitized solar cell properties. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
201	Photoelectrochemical Performance of MoBiInSe5 Mixed Metal Chalcogenide Thin Films. Materials Today: Proceedings, 2015, 2, 1458-1463.	1.8	4
202	Cesium doped H3PW12O40 nanocrystalline thin films using single step hydrothermal route and its photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 18105-18119.	2.2	4
203	Nanogranular Cadmium Sulfoselenide Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Optoelectronic Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000002.	1.8	4
204	Enhanced fill factor for normal nâ€iâ€p planar heterojunction and mesoscopic perovskite solar cells using rutheniumâ€doped TiO 2 electron transporting layer. Progress in Photovoltaics: Research and Applications, 2021, 29, 159-171.	8.1	4
205	Agro-Waste Generated Pd/CAP-Ash Catalyzed Ligand-Free Approach for Suzuki–Miyaura Coupling Reaction. Catalysis Letters, 2021, 151, 3617-3631.	2.6	4
206	A thioacetamide additive-based hybrid (MA0.5FA0.5)PbI3 perovskite solar cells crossing 21 % efficiency with excellent long term stability. Materials Today Chemistry, 2022, 25, 100950.	3.5	4
207	Thickness Dependent Photoelectrochemical Performance of Chemo-Synthesized Nanostructured CdS Thin Films. Zeitschrift Fur Physikalische Chemie, 2014, 228, 817-827.	2.8	3
208	Novel Approach for Invention of Nubbly-Like Cd(SSe) Thin Film: Photoelectrochemical Application. Macromolecular Symposia, 2016, 362, 82-86.	0.7	3
209	Enhanced Exciplex Emission of Pyrene Thin Films Doped by Perylene: Structural, Photophysical and Morphological Investigation. Journal of Fluorescence, 2018, 28, 897-903.	2.5	3
210	Morphological engineering of novel nanocrystalline Cu2Sn(S,Se)3 thin film through annealing temperature variation: Assessment of photoelectrochemical cell performance. Materials Science in Semiconductor Processing, 2020, 120, 105218.	4.0	3
211	Surfactant-Assisted Morphological Modification of Hierarchical CuO Thin Films for Electrochemical Supercapacitors. Advanced Science Letters, 2015, 21, 2594-2597.	0.2	3
212	Single source precursor for vacuum evaporation of MoBi2Se5 photoactive thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 2879-2886.	2.2	2
213	Novel synthesis of efficient counter electrode by facile arrested precipitation technique (APT). Journal of Materials Science: Materials in Electronics, 2016, 27, 3812-3820.	2.2	2
214	Optimization and comparative analysis of Cs ion intercalated H3PMO12O40 photocathode: one-step hydrothermal strategy. Journal of Materials Science: Materials in Electronics, 2021, 32, 22921-22935.	2.2	2
215	Hydrothermally synthesized nanocrystalline photoactive SnS ₂ thin films: effect of surface directing agents. New Journal of Chemistry, 2022, 46, 3277-3287.	2.8	2
216	An efficient Cu ₂ Zn _{1â^'<i>x</i>} In _{<i>x</i>} Sn(S,Se) ₄ multicomponent photocathode <i>via</i> one-step hydrothermal approach for thin film solar cell. Journal of Materials Chemistry C, 2022, 10, 3447-3460.	5.5	2

#	Article	IF	CITATIONS
217	Nanorod-based dye sensitized solar cells. , 2019, , 349-374.		1
218	Electrolyte for dye-sensitized, quantum dots, and perovskite solar cells. , 2019, , 513-555.		1
219	Perovskite Solar Cells: Simultaneous Improved Performance and Thermal Stability of Planar Metal Ion Incorporated CsPbI ₂ Br Allâ€Inorganic Perovskite Solar Cells Based on MgZnO Nanocrystalline Electron Transporting Layer (Adv. Energy Mater. 3/2020). Advanced Energy Materials, 2020. 10. 2070012.	19.5	1