Sangam Shrestha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determining suitable machine learning classifier technique for prediction of malaria incidents attributed to climate of Odisha. International Journal of Environmental Health Research, 2022, 32, 1716-1732.	1.3	11
2	Projected changes in the n <scp>earâ€future</scp> mean climate and extreme climate events in northeast Thailand. International Journal of Climatology, 2022, 42, 2470-2492.	1.5	15
3	Multi-scale assessment of water security under climate change in North China in the past two decades. Science of the Total Environment, 2022, 805, 150103.	3.9	7
4	Integrated assessment of the landuse change and climate change impacts on the sediment yield in the Songkhram River Basin, Thailand. Catena, 2022, 209, 105859.	2.2	13
5	Spatio-temporal trend mapping of precipitation and its extremes across Afghanistan (1951–2010). Theoretical and Applied Climatology, 2022, 147, 605-626.	1.3	7
6	Investigating major causes of extreme floods using global datasets: A case of Nepal, USA & Thailand. Progress in Disaster Science, 2022, 13, 100212.	1.4	5
7	Effect of stocking density and tank colour on nursery growth performance, cannibalism and survival of the Asian seabass <i>Lates calcarifer</i> (Bloch, 1790) in a recirculating aquaculture system. Aquaculture Research, 2022, 53, 2472-2483.	0.9	4
8	Modification and upscaling of S–W model based on vertical distributions of soil moisture and vegetation root biomass. Environmental Research, 2022, 208, 112765.	3.7	0
9	Groundwater governance: a review of the assessment methodologies. Environmental Reviews, 2022, 30, 202-216.	2.1	3
10	Evaluating the influence of different environmental water allocation schemes on the water level of a typical shallow lake in semiarid regions: From the perspective of an integrated modeling approach. Environmental Research, 2022, 212, 112991.	3.7	4
11	Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River basin, Pakistan. Groundwater for Sustainable Development, 2022, 17, 100743.	2.3	20
12	A generalized methodology for ranking climate models based on climate indices for sector-specific studies: An application to the Mekong sub-basin. Science of the Total Environment, 2022, 829, 154551.	3.9	9
13	Assessing the future climate change, land use change, and abstraction impacts on groundwater resources in the Tak Special Economic Zone, Thailand. Environmental Research, 2022, 211, 113026.	3.7	5
14	Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research, 2022, 211, 113070.	3.7	10
15	A novel ecohydrological model by capturing variations in climate change and vegetation coverage in a semi-arid region of China. Environmental Research, 2022, 211, 113085.	3.7	13
16	Site selection for managed aquifer recharge in the city of Kabul, Afghanistan, using a multi-criteria decision analysis and geographic information system. Hydrogeology Journal, 2022, 30, 59-78.	0.9	17
17	Spatiotemporal variations in evapotranspiration and its influencing factors in the semiarid Hailar river basin, Northern China. Environmental Research, 2022, 212, 113275.	3.7	7
18	Assessing alterations of water level due to environmental water allocation at multiple temporal scales and its impact on water quality in Baiyangdian Lake, China. Environmental Research, 2022, 212, 113366.	3.7	7

#	Article	IF	CITATIONS
19	Projecting the impact of human activities and climate change on water resources in the transboundary Sre Pok River Basin. Climatic Change, 2022, 172, .	1.7	2
20	Phytoplankton community variation and ecological health assessment for impounded lakes along the eastern route of China's South-to-North Water Diversion Project. Journal of Environmental Management, 2022, 318, 115561.	3.8	20
21	Analysing the variation in farmers' perceptions of climate change impacts on crop production and adaptation measures across the Ganges' Tidal Floodplain in Bangladesh. Local Environment, 2022, 27, 968-987.	1.1	3
22	Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal. Journal of Cleaner Production, 2021, 279, 123483.	4.6	38
23	Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrology and Hydrobiology, 2021, 21, 79-95.	1.0	21
24	Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Science of the Total Environment, 2021, 757, 143919.	3.9	66
25	Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region. Journal of Environmental Management, 2021, 278, 111524.	3.8	20
26	Toward sustainable development: Risk-informed and disaster-resilient development in Asia. , 2021, , 1-20.		1
27	Adaptation strategies for rainfed rice water management under climate change in Songkhram River Basin, Thailand. Journal of Water and Climate Change, 2021, 12, 2181-2198.	1.2	3
28	Predicting flood events in Kathmandu Metropolitan City under climate change and urbanisation. Journal of Environmental Management, 2021, 281, 111894.	3.8	24
29	Projecting Relative Sea Level Rise under Climate Change at the Phrachula Chomklao Fort Tide Gauge in the Upper Gulf of Thailand. Water (Switzerland), 2021, 13, 1702.	1.2	7
30	Assessment of climate change impact on hydrology of a transboundary river of Bhutan and India. Journal of Water and Climate Change, 2021, 12, 3224-3239.	1.2	7
31	Evaluation of the CMIP5 general circulation models for simulating the precipitation and temperature of the Koshi River Basin in Nepal. Journal of Water and Climate Change, 2021, 12, 3282-3296.	1.2	7
32	Future hydrology and hydrological extremes under climate change in Asian river basins. Scientific Reports, 2021, 11, 17089.	1.6	15
33	Influence of climate change and anthropogenic factors on the Ile River basin streamflow, Kazakhstan. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
34	Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environmental Modelling and Software, 2021, 144, 105136.	1.9	43
35	An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins. Journal of Hydrology, 2021, 601, 126622.	2.3	9
36	Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model. Science of the Total Environment, 2021, 790, 148139.	3.9	22

#	Article	IF	CITATIONS
37	Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand. Science of the Total Environment, 2021, 792, 148370.	3.9	38
38	Evaluation of the CORDEX regional climate models (RCMs) for simulating climate extremes in the Asian cities. Science of the Total Environment, 2021, 797, 149137.	3.9	12
39	How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review. Science of the Total Environment, 2021, 794, 148651.	3.9	45
40	Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather and Climate Extremes, 2021, 34, 100399.	1.6	13
41	scIDS: Single-cell Imputation by combining Deep autoencoder neural networks and Subspace regression. , 2021, , .		0
42	Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China. Science of the Total Environment, 2020, 698, 134171.	3.9	16
43	Evaluation of Soil and Water Assessment Tool and Artificial Neural Network models for hydrologic simulation in different climatic regions of Asia. Science of the Total Environment, 2020, 701, 134308.	3.9	64
44	Establishing a time series trend structure model to mine potential hydrological information from hydrometeorological time series data. Science of the Total Environment, 2020, 698, 134227.	3.9	17
45	Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. Science of the Total Environment, 2020, 701, 134929.	3.9	85
46	Unraveling the sensitivity and nonlinear response of water use efficiency to the water–energy balance and underlying surface condition in a semiarid basin. Science of the Total Environment, 2020, 699, 134405.	3.9	14
47	Evaluation of land use change and its impact on water yield in Songkhram River basin, Thailand. International Journal of River Basin Management, 2020, 18, 23-31.	1.5	15
48	Effective saturation-based weighting for interblock hydraulic conductivity in unsaturated zone soil water flow modelling using one-dimensional vertical finite-difference model. Journal of Hydroinformatics, 2020, 22, 423-439.	1.1	0
49	Assessment of flood adaptive capacity of urban areas in Thailand. Environmental Impact Assessment Review, 2020, 81, 106363.	4.4	42
50	Evaluation of global land use/land cover products for hydrologic simulation in the Upper Yom River Basin, Thailand. Science of the Total Environment, 2020, 708, 135148.	3.9	19
51	Assessment of the impact of climate change and mining activities on streamflow and selected metal's loading in the Chindwin River, Myanmar. Environmental Research, 2020, 181, 108942.	3.7	24
52	Clobal evapotranspiration hiatus explained by vegetation structural and physiological controls. Ecological Engineering, 2020, 158, 106046.	1.6	4
53	Evaluation of adaptation options for reducing soil erosion due to climate change in the Swat River Basin of Pakistan. Ecological Engineering, 2020, 158, 106017.	1.6	16
54	Assessing social resilience of flood-vulnerable communities in Ayeyarwady Delta, Myanmar. International Journal of Disaster Risk Reduction, 2020, 51, 101745.	1.8	33

#	Article	IF	CITATIONS
55	Forecasting water demand under climate change using artificial neural network: a case study of Kathmandu Valley, Nepal. Water Science and Technology: Water Supply, 2020, 20, 1823-1833.	1.0	8
56	Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin, Thailand. Environmental Research, 2020, 186, 109544.	3.7	24
57	Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal. Science of the Total Environment, 2020, 740, 140156.	3.9	19
58	Integrated assessment of extreme climate and landuse change impact on sediment yield in a mountainous transboundary watershed of India and Pakistan. Journal of Mountain Science, 2020, 17, 624-640.	0.8	6
59	Macrozoobenthos variations in shallow connected lakes under the influence of intense hydrologic pulse changes. Journal of Hydrology, 2020, 584, 124755.	2.3	18
60	Comparison of different quantile regression methods to estimate predictive hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand. Journal of Flood Risk Management, 2020, 13, e12585.	1.6	5
61	Multimodelling approach to the assessment of climate change impacts on hydrology and river morphology in the Chindwin River Basin, Myanmar. Catena, 2020, 188, 104464.	2.2	22
62	Mapping groundwater resiliency under climate change scenarios: A case study of Kathmandu Valley, Nepal. Environmental Research, 2020, 183, 109149.	3.7	36
63	Projections of climatic extremes in a data poor transboundary river basin of India and Pakistan. International Journal of Climatology, 2020, 40, 4992-5010.	1.5	15
64	Trend, seasonality and relationships of aquatic environmental quality indicators and implications: An experience from Songhua River, NE China. Ecological Engineering, 2020, 145, 105706.	1.6	17
65	A new trend function-based regression kriging for spatial modeling of groundwater hydraulic heads under the sparse distribution of measurement sites. Acta Geophysica, 2020, 68, 751-772.	1.0	4
66	Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environmental Research, 2020, 185, 109440.	3.7	52
67	A statistical approach towards defining national-scale meteorological droughts in India using crop data. Environmental Research Letters, 2020, 15, 094090.	2.2	10
68	Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Science of the Total Environment, 2019, 693, 133440.	3.9	102
69	Vertical variations of soil water and its controlling factors based on the structural equation model in a semi-arid grassland. Science of the Total Environment, 2019, 691, 1016-1026.	3.9	49
70	Factors Driving Rice Land Change 1989–2018 in the Deli Serdang Regency, Indonesia. Agriculture (Switzerland), 2019, 9, 186.	1.4	5
71	Effect of Water and Rice Straw Management Practices on Soil Organic Carbon Stocks in a Double-Cropped Paddy Field. Communications in Soil Science and Plant Analysis, 2019, 50, 2330-2342.	0.6	1
72	Land use impact on the water quality of large tropical river: Mun River Basin, Thailand. Environmental Monitoring and Assessment, 2019, 191, 614.	1.3	36

#	Article	IF	CITATIONS
73	Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena, 2019, 181, 104082.	2.2	177
74	A multi-temporal analysis of streamflow using multiple CMIP5 GCMs in the Upper Ayerawaddy Basin, Myanmar. Climatic Change, 2019, 155, 59-79.	1.7	13
75	Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double-rice paddy field in the Central Plain of Thailand. European Journal of Agronomy, 2019, 107, 18-29.	1.9	41
76	Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Science of the Total Environment, 2019, 652, 189-201.	3.9	83
77	Fuzzy-based approach for evaluating groundwater sustainability of Asian cities. Sustainable Cities and Society, 2019, 44, 321-331.	5.1	22
78	How significant is subâ€daily variability of rainfall for hydrological modelling of floods? A satellite based approach to subâ€daily downscaling of gauged rainfall. Meteorological Applications, 2019, 26, 288-299.	0.9	7
79	Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology, 2019, 135, 193-209.	1.3	67
80	Urban Flooding and Climate Change. Environment and Urbanization ASIA, 2018, 9, 86-100.	0.9	43
81	Evaluation of the SWAT model performance for simulating river discharge in the Himalayan and tropical basins of Asia. Hydrology Research, 2018, 49, 846-860.	1.1	40
82	Groundwater vulnerability to climate change: A review of the assessment methodology. Science of the Total Environment, 2018, 612, 853-875.	3.9	79
83	Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and and Its Evaluation and Implication in the Transboundary Jhelum River Basin. Atmosphere, 2018, 9, 160.	1.0	18
84	Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of the Total Environment, 2018, 643, 1610-1622.	3.9	149
85	Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. Journal of Cleaner Production, 2018, 198, 1157-1164.	4.6	90
86	Editorial of special issue on climate change impact on water environment. Science of the Total Environment, 2018, 644, 474.	3.9	0
87	Projection of Climate Change Scenarios in the Kabul River Basin, Afghanistan. Current Science, 2018, 114, 1304.	0.4	19
88	Projections of Extreme Precipitation Events under Climate Change Scenarios in Mahaweli River Basin of Sri Lanka. Current Science, 2018, 114, 1495.	0.4	9
89	Climate change impact on groundwater recharge and suggested adaptation strategies for selected Asian cities. APN Science Bulletin, 2018, 8, .	0.2	6
90	Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 2017, 7, 503-519.	2.8	193

#	Article	IF	CITATIONS
91	Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal. Theoretical and Applied Climatology, 2017, 128, 311-323.	1.3	27
92	Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment, 2017, 599-600, 689-699.	3.9	74
93	The effects of cultivation methods and water regimes on root systems of drought-tolerant (RD6) and drought-sensitive (RD10) rice varieties of Thailand. Archives of Agronomy and Soil Science, 2017, 63, 1198-1209.	1.3	33
94	Spatial and temporal variation in the trends of hydrological response of forested watersheds in Thailand. Environmental Earth Sciences, 2017, 76, 1.	1.3	4
95	Model-based estimation of land subsidence in Kathmandu Valley, Nepal. Geomatics, Natural Hazards and Risk, 2017, 8, 974-996.	2.0	23
96	Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Science of the Total Environment, 2017, 576, 586-598.	3.9	82
97	Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand. International Journal of Sustainable Built Environment, 2017, 6, 285-298.	3.2	61
98	Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of the Total Environment, 2017, 575, 779-790.	3.9	77
99	Assessment of Climate Change Impact on Water Diversion from the Bago River to the Moeyingyi Wetland, Myanmar. Current Science, 2017, 112, 377.	0.4	7
100	Working Towards a Sustainable Future. Eos, 2017, 98, .	0.1	0
101	Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 15-37.	1.0	55
102	Changes in Climate Extremes over North Thailand, 1960–2099. Journal of Climatology, 2016, 2016, 1-18.	0.7	26
103	Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water (Switzerland), 2016, 8, 389.	1.2	42
104	Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science and Policy, 2016, 61, 1-13.	2.4	95
105	Modelling the potential impacts of climate change on hydrology of the Bago River Basin, Myanmar. International Journal of River Basin Management, 2016, 14, 287-297.	1.5	12
106	Land Use and Climate Change Impacts on the Hydrology of the Bago River Basin, Myanmar. Environmental Modeling and Assessment, 2016, 21, 819-833.	1.2	25
107	Modeling hydrologic responses to land management scenarios for the Chi River Sub-basin Part II, Northeast Thailand. Environmental Earth Sciences, 2016, 75, 1.	1.3	11
108	Assessment of potential impacts of climate and land use changes on stream flow: a case study of the Nam Xong watershed in Lao PDR. Journal of Water and Climate Change, 2016, 7, 184-197.	1.2	11

#	Article	IF	CITATIONS
109	Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Climate Risk Management, 2016, 14, 27-41.	1.5	36
110	Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences, 2016, 75, 1.	1.3	55
111	Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Science of the Total Environment, 2016, 556, 23-35.	3.9	137
112	Development of a land suitability model for saffron (<i>Crocus sativus</i> L.) cultivation in Khost Province of Afghanistan using GIS and AHP techniques. Archives of Agronomy and Soil Science, 2016, 62, 921-934.	1.3	24
113	Analysis of temperature projections in the Koshi River Basin, Nepal. International Journal of Climatology, 2016, 36, 266-279.	1.5	32
114	Water–energy–carbon nexus: a case study of Bangkok. Water Science and Technology: Water Supply, 2015, 15, 889-897.	1.0	5
115	Evaluation of groundwater-based irrigation systems using a water–energy–food nexus approach: a case study from Southeast Nepal. Journal of Applied Water Engineering and Research, 2015, 3, 53-66.	1.0	17
116	Managing Water Resources under Climate Uncertainty. Springer Water, 2015, , .	0.2	12
117	Field measurements for evaluating the RZWQM and PESTFADE models for the tropical zone of Thailand. Journal of Environmental Management, 2015, 147, 286-296.	3.8	4
118	Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 2015, 187, 548.	1.3	104
119	Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theoretical and Applied Climatology, 2015, 121, 649-667.	1.3	48
120	Assessment of the climate-change impacts and evaluation of adaptation measures for paddy productivity in Quang Nam province, Vietnam. Paddy and Water Environment, 2015, 13, 241-253.	1.0	6
121	Assessment of the Impact of Climate Change on Water Availability in the Citarum River Basin, Indonesia: The Use of Statistical Downscaling and Water Planning Tools. , 2015, , 45-64.		4
122	Assessment of Water Availability under Climate Change Scenarios in Thailand. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	9
123	Assessment of surface water quality of Songkhram River (Thailand) using environmetric techniques. International Journal of River Basin Management, 2014, 12, 341-356.	1.5	12
124	Evaluation of the PESTFADE model using field-measured data from a sprinkler-irrigated soybean field in Pathumthani, Thailand. Journal of Applied Water Engineering and Research, 2014, 2, 57-69.	1.0	0
125	Evaluation of water use sustainability under future climate and irrigation management scenarios in Citarum River Basin, Indonesia. International Journal of Sustainable Development and World Ecology, 2014, 21, 181-194.	3.2	15
126	Climate Change Impacts and Adaptation in Water Resources and Water Use Sectors. , 2014, , .		3

8

#	Article	IF	CITATIONS
127	Evaluation of the Root Zone Water Quality Model (RZWQM) Using Field-Measured Data from the Tropical Zone, Thailand. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	5
128	Impact of Climate Change on River Flow and Hydropower Production in Kulekhani Hydropower Project of Nepal. Environmental Processes, 2014, 1, 231-250.	1.7	57
129	Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. Journal of Hydrology, 2014, 511, 49-60.	2.3	114
130	Assessment of climate change impacts on irrigation water requirement and rice yield for Ngamoeyeik Irrigation Project in Myanmar. Journal of Water and Climate Change, 2014, 5, 427-442.	1.2	24
131	Assessing groundwater resource and its sustainability in drought prone area of India. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_235-I_240.	0.0	1
132	Assessment of Water Availability Under Climate Change Scenarios in Thailand. , 2014, , 9-23.		7
133	Global Climate System, Energy Balance, and the Hydrological Cycle. , 2014, , 1-30.		1
134	A GIS-based methodology to delineate potential areas for groundwater development: a case study from Kathmandu Valley, Nepal. Applied Water Science, 2013, 3, 453-465.	2.8	33
135	Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal. Water Resources Management, 2013, 27, 5223.	1.9	31
136	HOUSEHOLD COPING MEASURES WITH WATER SCARCITY: A CASE STUDY IN KATHMANDU, NEPAL. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, III_73-III_81.	0.1	5
137	Identification of Nitrate Sources in Rainwater of Kathmandu Valley: a Chemical and Stable Isotopic Approach. Journal of Water and Environment Technology, 2013, 11, 377-389.	0.3	9
138	Impacts of climate change on irrigation water requirements for rice–wheat cultivation in Bagmati River Basin, Nepal. Journal of Water and Climate Change, 2013, 4, 422-439.	1.2	19
139	Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand. Sustainability, 2013, 5, 3244-3274.	1.6	54
140	A Decision Support Tool for Selection of Suitable General Circulation Model and Future Climate Assessment. Journal of Earth Science & Climatic Change, 2012, 03, .	0.2	1
141	A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecological Indicators, 2011, 11, 480-488.	2.6	62
142	A framework for measuring groundwater sustainability. Environmental Science and Policy, 2011, 14, 396-407.	2.4	80
143	Assessment of Deep Groundwater Quality in Kathmandu Valley Using Multivariate Statistical Techniques. Water, Air, and Soil Pollution, 2010, 210, 277-288.	1.1	51
144	Vulnerability of freshwater resources in large and medium Nepalese river basins to environmental change. Water Science and Technology, 2010, 61, 1525-1534.	1.2	33

#	Article	IF	CITATIONS
145	Spatial distribution of arsenic in the intertidal sediments of River Scheldt, Belgium. Environment International, 2009, 35, 461-465.	4.8	14
146	Arsenic occurrence in groundwater of Kathmandu Valley, Nepal. Desalination and Water Treatment, 2009, 4, 248-254.	1.0	27
147	A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environmental Modelling and Software, 2008, 23, 182-194.	1.9	76
148	Catchment scale modelling of point source and non-point source pollution loads using pollutant export coefficients determined from long-term in-stream monitoring data. Journal of Hydro-Environment Research, 2008, 2, 134-147.	1.0	32
149	Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River. Journal of Hydroinformatics, 2008, 10, 43-56.	1.1	61
150	The assessment of spatial and temporal transferability of a physically based distributed hydrological model parameters in different physiographic regions of Nepal. Journal of Hydrology, 2007, 347, 153-172.	2.3	36
151	Effects of groundwater recharge on nitrate-nitrogen loadings. Journal of Water and Environment Technology, 2007, 5, 87-93.	0.3	3
152	Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 2007, 22, 464-475.	1.9	1,281
153	Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environmental Modelling and Software, 2006, 21, 961-975.	1.9	58