## Anton Alexandru Kiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47758/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Novel Eco-Efficient Process for Methyl Methacrylate Production. Industrial & Engineering<br>Chemistry Research, 2021, 60, 1290-1301.                                                                           | 1.8 | 8         |
| 2  | The Manchester perspective on using the Design Project to enhance the education of chemical engineering students. Journal of Chemical Technology and Biotechnology, 2021, 96, 1453-1464.                       | 1.6 | 4         |
| 3  | Novel pervaporation-assisted pressure swing reactive distillation process for intensified synthesis of dimethyl carbonate. Chemical Engineering and Processing: Process Intensification, 2021, 162, 108358.    | 1.8 | 13        |
| 4  | Enhancing the Separation Efficiency in Acetic Acid Manufacturing by Methanol Carbonylation.<br>Chemical Engineering and Technology, 2021, 44, 1792-1802.                                                       | 0.9 | 3         |
| 5  | Ecoâ€efficient Separation of Mono―and Dichloroacetic Acid by Thermally Coupled Extractive Distillation. Chemical Engineering and Technology, 2020, 43, 2403-2417.                                              | 0.9 | 4         |
| 6  | Rethinking energy use in distillation processes for a more sustainable chemical industry. Energy, 2020, 203, 117788.                                                                                           | 4.5 | 80        |
| 7  | Novel eco-efficient process for dimethyl carbonate production by indirect alcoholysis of urea.<br>Chemical Engineering Research and Design, 2020, 160, 486-498.                                                | 2.7 | 13        |
| 8  | A systematic framework for assessing the applicability of reactive distillation for quaternary mixtures using a mapping method. Computers and Chemical Engineering, 2020, 136, 106804.                         | 2.0 | 5         |
| 9  | Process systems engineering developments in Europe from an industrial and academic perspective.<br>Computers and Chemical Engineering, 2020, 138, 106823.                                                      | 2.0 | 11        |
| 10 | From Batch to Continuous Sustainable Production of 3-Methyl-3-penten-2-one for Synthetic Ketone<br>Fragrances. ACS Sustainable Chemistry and Engineering, 2020, 8, 17201-17214.                                | 3.2 | 8         |
| 11 | Eco-efficient processes for biodiesel production from waste lipids. Journal of Cleaner Production, 2019, 239, 118073.                                                                                          | 4.6 | 27        |
| 12 | Innovative mapping method for screening reactive distillation designs. Computer Aided Chemical Engineering, 2019, 46, 739-744.                                                                                 | 0.3 | 2         |
| 13 | Pilotâ€scale experimental studies on ethanol purification by cyclic stripping. AICHE Journal, 2019, 65, e16673.                                                                                                | 1.8 | 9         |
| 14 | Dynamics and control of a heat pump assisted azeotropic dividing-wall column for biobutanol purification. Chemical Engineering Research and Design, 2019, 146, 416-426.                                        | 2.7 | 17        |
| 15 | Optimally designed reactive distillation processes for ecoâ€efficient production of ethyl levulinate.<br>Journal of Chemical Technology and Biotechnology, 2019, 94, 2131-2140.                                | 1.6 | 23        |
| 16 | Effect of boiling point rankings and feed locations on the applicability of reactive distillation to quaternary systems. Chemical Engineering Research and Design, 2019, 145, 184-193.                         | 2.7 | 12        |
| 17 | Process engineering advances in pharmaceutical and chemical industries: digital process design, advanced rectification, and continuous filtration. Current Opinion in Chemical Engineering, 2019, 25, 114-121. | 3.8 | 11        |
| 18 | Inherently Safer Design and Optimization of Intensified Separation Processes for Furfural Production. Industrial & Amp; Engineering Chemistry Research, 2019, 58, 6105-6120.                                   | 1.8 | 45        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reactive Distillation: Stepping Up to the Next Level of Process Intensification. Industrial &<br>Engineering Chemistry Research, 2019, 58, 5909-5918.                          | 1.8 | 116       |
| 20 | Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Topics in Catalysis, 2019, 62, 1132-1148.                                                 | 1.3 | 42        |
| 21 | Dynamics and control of a heat pump assisted azeotropic dividing-wall column (HP-A-DWC) for biobutanol purification. Computer Aided Chemical Engineering, 2019, 46, 1339-1344. | 0.3 | 4         |
| 22 | Eco-efficient Downstream Processing of Biobutanol by Enhanced Process Intensification and Integration. ACS Sustainable Chemistry and Engineering, 2018, 6, 5452-5461.          | 3.2 | 57        |
| 23 | Novel method for mapping the applicability of reactive distillation. Chemical Engineering and Processing: Process Intensification, 2018, 128, 263-275.                         | 1.8 | 32        |
| 24 | Ultrasoundâ€assisted emerging technologies for chemical processes. Journal of Chemical Technology<br>and Biotechnology, 2018, 93, 1219-1227.                                   | 1.6 | 33        |
| 25 | An industrial perspective on membrane distillation processes. Journal of Chemical Technology and Biotechnology, 2018, 93, 2047-2055.                                           | 1.6 | 71        |
| 26 | Preliminary economic ranking of reactive distillation processes using a navigation method. Computer<br>Aided Chemical Engineering, 2018, 43, 827-832.                          | 0.3 | 5         |
| 27 | Innovative Reactive Distillation Process for the Sustainable Synthesis of Natural Benzaldehyde. ACS Sustainable Chemistry and Engineering, 2018, 6, 14114-14124.               | 3.2 | 32        |
| 28 | Heat pump assisted azeotropic DWC for enhanced biobutanol separation. Computer Aided Chemical Engineering, 2018, 43, 791-796.                                                  | 0.3 | 4         |
| 29 | A review on process intensification in <scp>HiGee</scp> distillation. Journal of Chemical Technology and Biotechnology, 2017, 92, 1136-1156.                                   | 1.6 | 71        |
| 30 | Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration. Chemical Engineering Research and Design, 2017, 119, 66-74.           | 2.7 | 58        |
| 31 | Optimal design of intensified processes for DME synthesis. Computers and Chemical Engineering, 2017, 105, 142-151.                                                             | 2.0 | 67        |
| 32 | Techno-economic evaluation of an ultrasound-assisted Enzymatic Reactive Distillation process.<br>Computers and Chemical Engineering, 2017, 105, 123-131.                       | 2.0 | 9         |
| 33 | Microwave plasma emerging technologies for chemical processes. Journal of Chemical Technology and Biotechnology, 2017, 92, 2495-2505.                                          | 1.6 | 37        |
| 34 | Optimal hybrid separations for intensified downstream processing of biobutanol. Separation and Purification Technology, 2017, 185, 149-159.                                    | 3.9 | 39        |
| 35 | Enhanced performance of wet compression-resorption heat pumps by using NH3-CO2-H2O as working fluid. Energy, 2017, 124, 531-542.                                               | 4.5 | 14        |
| 36 | Eco-efficient butanol separation in the ABE fermentation process. Separation and Purification Technology, 2017, 177, 49-61.                                                    | 3.9 | 87        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modular manufacturing processes: Status, challenges, and opportunities. AICHE Journal, 2017, 63, 4262-4272.                                                                                                | 1.8 | 133       |
| 38 | Enhanced Process for Methanol Production by CO2 Hydrogenation. Computer Aided Chemical Engineering, 2016, , 985-990.                                                                                       | 0.3 | 5         |
| 39 | Enhanced Down-Stream Processing of Biobutanol in the ABE Fermentation Process. Computer Aided Chemical Engineering, 2016, 38, 979-984.                                                                     | 0.3 | 13        |
| 40 | Novel Process for Conversion of CO2 to Dimethyl Carbonate using Catalytic Membrane Reactors.<br>Computer Aided Chemical Engineering, 2016, , 991-996.                                                      | 0.3 | 4         |
| 41 | Cyclic distillation technology - a mini-review. Journal of Chemical Technology and Biotechnology, 2016, 91, 1215-1223.                                                                                     | 1.6 | 25        |
| 42 | Separation technology–Making a difference in biorefineries. Biomass and Bioenergy, 2016, 95, 296-309.                                                                                                      | 2.9 | 111       |
| 43 | Quick assessment of binary distillation efficiency using a heat engine perspective. Energy, 2016, 116, 20-31.                                                                                              | 4.5 | 33        |
| 44 | Techno-economic evaluation of the direct conversion of CO2 to dimethyl carbonate using catalytic membrane reactors. Computers and Chemical Engineering, 2016, 86, 136-147.                                 | 2.0 | 35        |
| 45 | Novel efficient process for methanol synthesis by CO 2 hydrogenation. Chemical Engineering Journal, 2016, 284, 260-269.                                                                                    | 6.6 | 240       |
| 46 | Novel Heat-Pump-Assisted Extractive Distillation for Bioethanol Purification. Industrial &<br>Engineering Chemistry Research, 2015, 54, 2208-2213.                                                         | 1.8 | 160       |
| 47 | Optimal design and plantwide control of novel processes for diâ€nâ€pentyl ether production. Journal of<br>Chemical Technology and Biotechnology, 2015, 90, 992-1001.                                       | 1.6 | 21        |
| 48 | Low grade waste heat recovery using heat pumps and power cycles. Energy, 2015, 89, 864-873.                                                                                                                | 4.5 | 105       |
| 49 | Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation. Computer Aided<br>Chemical Engineering, 2015, , 1307-1312.                                                         | 0.3 | 3         |
| 50 | A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction. Chemical Engineering and Processing: Process Intensification, 2015, 93, 87-97. | 1.8 | 27        |
| 51 | Pilotâ€scale studies of process intensification by cyclic distillation. AICHE Journal, 2015, 61, 2581-2591.                                                                                                | 1.8 | 29        |
| 52 | A systems engineering perspective on process integration in industrial biotechnology. Journal of<br>Chemical Technology and Biotechnology, 2015, 90, 349-355.                                              | 1.6 | 60        |
| 53 | Distillation technology–Âstill young and full of breakthrough opportunities. Journal of Chemical<br>Technology and Biotechnology, 2014, 89, 479-498.                                                       | 1.6 | 201       |
| 54 | Cyclic distillation – Design, control and applications. Separation and Purification Technology, 2014, 125, 326-336.                                                                                        | 3.9 | 31        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Catalytic cyclic distillation – A novel process intensification approach in reactive separations.<br>Chemical Engineering and Processing: Process Intensification, 2014, 81, 1-12. | 1.8 | 31        |
| 56 | Optimal performance of compression–resorption heat pump systems. Applied Thermal Engineering, 2014, 65, 219-225.                                                                   | 3.0 | 15        |
| 57 | A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification, 2014, 86, 125-144.           | 1.8 | 97        |
| 58 | Batch Processes. Computer Aided Chemical Engineering, 2014, 35, 449-488.                                                                                                           | 0.3 | 15        |
| 59 | Steady-State Flowsheeting. Computer Aided Chemical Engineering, 2014, 35, 73-125.                                                                                                  | 0.3 | 3         |
| 60 | Process Intensification. Computer Aided Chemical Engineering, 2014, 35, 397-448.                                                                                                   | 0.3 | 15        |
| 61 | Generalised Computational Methods in Thermodynamics. Computer Aided Chemical Engineering, 2014, ,<br>157-200.                                                                      | 0.3 | 4         |
| 62 | Optimal Extractive Distillation Process for Bioethanol Dehydration. Computer Aided Chemical Engineering, 2014, 33, 1333-1338.                                                      | 0.3 | 5         |
| 63 | Process Synthesis by the Hierarchical Approach. Computer Aided Chemical Engineering, 2014, , 253-300.                                                                              | 0.3 | 3         |
| 64 | Synthesis of Reaction Systems. Computer Aided Chemical Engineering, 2014, 35, 301-343.                                                                                             | 0.3 | 2         |
| 65 | Synthesis of Separation Systems. Computer Aided Chemical Engineering, 2014, 35, 345-395.                                                                                           | 0.3 | 1         |
| 66 | Introduction in Process Simulation. Computer Aided Chemical Engineering, 2014, 35, 35-71.                                                                                          | 0.3 | 7         |
| 67 | Chemical Product Design. Computer Aided Chemical Engineering, 2014, , 489-523.                                                                                                     | 0.3 | 8         |
| 68 | Pinch Point Analysis. Computer Aided Chemical Engineering, 2014, 35, 525-564.                                                                                                      | 0.3 | 17        |
| 69 | Applied Energy Integration. Computer Aided Chemical Engineering, 2014, 35, 565-598.                                                                                                | 0.3 | Ο         |
| 70 | Plantwide Control. Computer Aided Chemical Engineering, 2014, , 599-647.                                                                                                           | 0.3 | 2         |
| 71 | Health, Safety and Environment. Computer Aided Chemical Engineering, 2014, , 649-678.                                                                                              | 0.3 | 2         |
| 72 | Process Design Project. Computer Aided Chemical Engineering, 2014, 35, 703-715.                                                                                                    | 0.3 | 0         |

5

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Economic Evaluation of Projects. Computer Aided Chemical Engineering, 2014, 35, 717-755.                                                                                 | 0.3 | 12        |
| 74 | Equipment Selection and Design. Computer Aided Chemical Engineering, 2014, 35, 757-788.                                                                                  | 0.3 | 2         |
| 75 | Phase Equilibria. Computer Aided Chemical Engineering, 2014, 35, 201-251.                                                                                                | 0.3 | 4         |
| 76 | Sustainability Analysis. Computer Aided Chemical Engineering, 2014, 35, 679-702.                                                                                         | 0.3 | 1         |
| 77 | Integrated Process and Product Design. Computer Aided Chemical Engineering, 2014, , 1-33.                                                                                | 0.3 | 6         |
| 78 | Dynamic Simulation. Computer Aided Chemical Engineering, 2014, 35, 127-156.                                                                                              | 0.3 | 12        |
| 79 | Control of Cyclic Distillation Systems. Computer Aided Chemical Engineering, 2014, 33, 589-594.                                                                          | 0.3 | 1         |
| 80 | Optimal design, dynamics and control of a reactive DWC for biodiesel production. Chemical Engineering Research and Design, 2013, 91, 1760-1767.                          | 2.7 | 67        |
| 81 | Evaluation of configuration alternatives for multi-product polyester synthesis by reactive distillation. Computers and Chemical Engineering, 2013, 52, 193-203.          | 2.0 | 9         |
| 82 | Optimal Economic Design of an Extractive Distillation Process for Bioethanol Dehydration. Energy<br>Technology, 2013, 1, 166-170.                                        | 1.8 | 41        |
| 83 | Design and optimization of an ethanol dehydration process using stochastic methods. Separation and<br>Purification Technology, 2013, 105, 90-97.                         | 3.9 | 76        |
| 84 | Intensified process for aromatics separation powered by Kaibel and dividing-wall columns. Chemical Engineering and Processing: Process Intensification, 2013, 67, 39-48. | 1.8 | 36        |
| 85 | Revamping Dimethyl Ether Separation to a Single‣tep Process. Chemical Engineering and Technology, 2013, 36, 1261-1267.                                                   | 0.9 | 20        |
| 86 | Novel applications of dividingâ€wall column technology to biofuel production processes. Journal of<br>Chemical Technology and Biotechnology, 2013, 88, 1387-1404.        | 1.6 | 68        |
| 87 | Optimization of an Ethanol Dehydration Process Using Differential Evolution Algorithm. Computer<br>Aided Chemical Engineering, 2013, , 217-222.                          | 0.3 | 6         |
| 88 | Enhanced configurations for polyesters synthesis by reactive distillation. Computer Aided Chemical<br>Engineering, 2013, 32, 457-462.                                    | 0.3 | 0         |
| 89 | Innovative biodiesel production in a reactive dividing-wall column. Computer Aided Chemical Engineering, 2012, 30, 522-526.                                              | 0.3 | 2         |
| 90 | Enhancing multi-component separation of aromatics with Kaibel columns and DWC. Computer Aided Chemical Engineering, 2012, 30, 672-676.                                   | 0.3 | 0         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enhanced bioethanol dehydration in extractive dividing-wall columns. Computer Aided Chemical Engineering, 2012, , 667-671.                                                                | 0.3 | 3         |
| 92  | Reactive absorption in chemical process industry: A review on current activities. Chemical Engineering Journal, 2012, 213, 371-391.                                                       | 6.6 | 108       |
| 93  | Pilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillation.<br>Chemical Engineering Journal, 2012, 213, 175-185.                                    | 6.6 | 13        |
| 94  | A systematic framework for the feasibility and technical evaluation of reactive distillation processes.<br>Chemical Engineering and Processing: Process Intensification, 2012, 60, 55-64. | 1.8 | 64        |
| 95  | fficient Bioethanol Dehydration in Azeotropic and Extractive Dividing-wall Columns. Procedia Engineering, 2012, 42, 566-572.                                                              | 1.2 | 10        |
| 96  | Enhanced Dimethyl Ether Synthesis by Reactive Distillation in a Dividing-wall Column. Procedia<br>Engineering, 2012, 42, 581-587.                                                         | 1.2 | 13        |
| 97  | Modeling, Design and Control of Cyclic Distillation Systems. Procedia Engineering, 2012, 42, 1202-1213.                                                                                   | 1.2 | 6         |
| 98  | Towards FAME and Fortune by Reactive DWC. Procedia Engineering, 2012, 42, 1908-1914.                                                                                                      | 1.2 | 1         |
| 99  | Gas Holdup, Axial Dispersion, and Mass Transfer Studies in Bubble Columns. Industrial &<br>Engineering Chemistry Research, 2012, 51, 14268-14278.                                         | 1.8 | 46        |
| 100 | Cyclic distillation - towards energy efficient binary distillation. Computer Aided Chemical Engineering, 2012, , 697-701.                                                                 | 0.3 | 4         |
| 101 | Enhanced methanol recovery and glycerol separation in biodiesel production – DWC makes it happen.<br>Applied Energy, 2012, 99, 146-153.                                                   | 5.1 | 81        |
| 102 | Towards energy efficient distillation technologies – Making the right choice. Energy, 2012, 47, 531-542.                                                                                  | 4.5 | 213       |
| 103 | Innovative single step bioethanol dehydration in an extractive dividing-wall column. Separation and Purification Technology, 2012, 98, 290-297.                                           | 3.9 | 155       |
| 104 | Extractant screening for the separation of dichloroacetic acid from monochloroacetic acid by extractive distillation. Separation and Purification Technology, 2012, 98, 206-215.          | 3.9 | 20        |
| 105 | MODELING AND SIMULATION OF A PERVAPORATION PROCESS FOR FATTY ESTER SYNTHESIS. Chemical Engineering Communications, 2012, 199, 1357-1374.                                                  | 1.5 | 11        |
| 106 | Selection of heat pump technologies for energy efficient distillation. Computer Aided Chemical Engineering, 2012, , 267-271.                                                              | 0.3 | 1         |
| 107 | Extended rate-based model validation for polyester synthesis by reactive distillation. Computer Aided<br>Chemical Engineering, 2012, 30, 1182-1186.                                       | 0.3 | 3         |
| 108 | A review of biodiesel production by integrated reactive separation technologies. Journal of Chemical<br>Technology and Biotechnology, 2012, 87, 861-879.                                  | 1.6 | 132       |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dynamic optimization of a dividing-wall column using model predictive control. Chemical Engineering Science, 2012, 68, 132-142.                                   | 1.9 | 105       |
| 110 | Influence of liquid back mixing on a kinetically controlled reactive distillation process. Chemical Engineering Science, 2012, 68, 184-191.                       | 1.9 | 18        |
| 111 | Reactive DWC leading the way to FAME and fortune. Fuel, 2012, 95, 352-359.                                                                                        | 3.4 | 108       |
| 112 | Innovative dimethyl ether synthesis in a reactive dividing-wall column. Computers and Chemical Engineering, 2012, 38, 74-81.                                      | 2.0 | 126       |
| 113 | Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns.<br>Separation and Purification Technology, 2012, 86, 70-78.   | 3.9 | 323       |
| 114 | Modeling the liquid back mixing characteristics for a kinetically controlled reactive distillation process. Computer Aided Chemical Engineering, 2011, 29, 11-15. | 0.3 | 1         |
| 115 | A systematic approach towards applicability of reactive distillation. Computer Aided Chemical Engineering, 2011, 29, 191-195.                                     | 0.3 | 3         |
| 116 | Control and dynamic optimization of a BTX dividing-wall column. Computer Aided Chemical Engineering, 2011, , 447-451.                                             | 0.3 | 0         |
| 117 | Energy efficient control of a BTX dividing-wall column. Computers and Chemical Engineering, 2011, 35, 2896-2904.                                                  | 2.0 | 138       |
| 118 | Integrated reactive absorption process for synthesis of fatty esters. Bioresource Technology, 2011, 102, 490-498.                                                 | 4.8 | 50        |
| 119 | Dividing wall columns in chemical process industry: A review on current activities. Separation and Purification Technology, 2011, 80, 403-417.                    | 3.9 | 344       |
| 120 | Dynamics and control of a biodiesel process by reactive absorption. Chemical Engineering Research and Design, 2011, 89, 187-196.                                  | 2.7 | 43        |
| 121 | A control perspective on process intensification in dividing-wall columns. Chemical Engineering and Processing: Process Intensification, 2011, 50, 281-292.       | 1.8 | 181       |
| 122 | Understanding process intensification in cyclic distillation systems. Chemical Engineering and Processing: Process Intensification, 2011, 50, 655-664.            | 1.8 | 68        |
| 123 | Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Processing<br>Technology, 2011, 92, 1288-1296.                                  | 3.7 | 92        |
| 124 | Design and control of an energy integrated biodiesel process. Computer Aided Chemical Engineering, 2011, 29, 186-190.                                             | 0.3 | 0         |
| 125 | Dynamic modeling and process optimization of an industrial sulfuric acid plant. Chemical Engineering<br>Journal, 2010, 158, 241-249.                              | 6.6 | 38        |
| 126 | Separative reactors for integrated production of bioethanol and biodiesel. Computers and Chemical Engineering, 2010, 34, 812-820.                                 | 2.0 | 57        |

| #   | Article                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Heat-Integrated Process for Biodiesel by Reactive Absorption. Computer Aided Chemical Engineering, 2010, 28, 1111-1116.         | 0.3 | 3         |
| 128 | Advanced Control Strategies for Dividing-Wall Columns. Computer Aided Chemical Engineering, 2010, 28, 511-516.                  | 0.3 | 1         |
| 129 | Comparison of Control Strategies for Dividing-Wall Columns. Industrial & Engineering Chemistry Research, 2010, 49, 288-307.     | 1.8 | 120       |
| 130 | Plantwide Control of a Biodiesel Process by Reactive Absorption. Computer Aided Chemical Engineering, 2010, 28, 535-540.        | 0.3 | 2         |
| 131 | Reactive Dividing-Wall Columns - Defying Equilibrium Restrictions. Chemical Product and Process<br>Modeling, 2009, 4, .         | 0.5 | 2         |
| 132 | Novel process for biodiesel by reactive absorption. Separation and Purification Technology, 2009, 69, 280-287.                  | 3.9 | 78        |
| 133 | Innovative process for fatty acid esters by dual reactive distillation. Computers and Chemical Engineering, 2009, 33, 743-750.  | 2.0 | 88        |
| 134 | REACTIVE DIVIDING-WALL COLUMNS—HOW TO GET MORE WITH LESS RESOURCES?. Chemical Engineering Communications, 2009, 196, 1366-1374. | 1.5 | 83        |
| 135 | Versatile Biodiesel Production by Catalytic Separative Reactors. Computer Aided Chemical Engineering, 2009, 27, 1689-1694.      | 0.3 | 3         |
| 136 | Biodiesel by Reactive Absorption – Towards Green Technologies. Computer Aided Chemical<br>Engineering, 2009, 26, 847-852.       | 0.3 | 2         |
| 137 | Flexible Separative Reactors for Biodiesel Production. Computer Aided Chemical Engineering, 2009, , 1287-1292.                  | 0.3 | 0         |
| 138 | Cutting Edge Biodiesel Production by Catalytic Reactive Absorption. Computer Aided Chemical Engineering, 2009, , 945-950.       | 0.3 | 0         |
| 139 | Biodiesel by Catalytic Reactive Distillation Powered by Metal Oxides. Energy & Fuels, 2008, 22, 598-604.                        | 2.5 | 229       |
| 140 | Biodiesel production by heat-integrated reactive distillation. Computer Aided Chemical Engineering, 2008, , 775-780.            | 0.3 | 5         |
| 141 | Process for fatty acid methyl esters by dual reactive distillation. Computer Aided Chemical Engineering, 2007, , 1307-1312.     | 0.3 | 3         |
| 142 | Overcoming equilibrium limitations in reactive dividing-wall columns. Computer Aided Chemical Engineering, 2007, 24, 467-472.   | 0.3 | 5         |
| 143 | Biodiesel production by integrated reactive-separation design. Computer Aided Chemical Engineering, 2007, 24, 1283-1288.        | 0.3 | 5         |
| 144 | Advanced control of a reactive distillation column. Computer Aided Chemical Engineering, 2007, 24, 805-810.                     | 0.3 | 14        |

| #   | Article                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Design and control of recycle systems by non-linear analysis. Computers and Chemical Engineering, 2007, 31, 601-611.                                        | 2.0 | 54        |
| 146 | Linking experiments to modeling in biodiesel production. Computer Aided Chemical Engineering, 2006, , 731-736.                                              | 0.3 | 1         |
| 147 | Optimization studies in sulfuric acid production. Computer Aided Chemical Engineering, 2006, , 737-742.                                                     | 0.3 | 10        |
| 148 | Molecular design based on enhanced topological descriptors. Computer Aided Chemical Engineering, 2006, 21, 931-936.                                         | 0.3 | 1         |
| 149 | The heterogeneous advantage: biodiesel by catalytic reactive distillation. Topics in Catalysis, 2006, 40,<br>141-150.                                       | 1.3 | 199       |
| 150 | Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis and<br>Catalysis, 2006, 348, 75-81.                          | 2.1 | 499       |
| 151 | Design and control of recycle systems by non-linear analysis. Computer Aided Chemical Engineering, 2005, , 637-642.                                         | 0.3 | Ο         |
| 152 | Design of Recycle Systems with Parallel and Consecutive Reactions by Nonlinear Analysis. Industrial<br>& Engineering Chemistry Research, 2005, 44, 576-587. | 1.8 | 21        |
| 153 | State multiplicity in multi-reaction reactor-separator-recycle systems. Computer Aided Chemical Engineering, 2004, 18, 223-228.                             | 0.3 | 1         |
| 154 | State multiplicity in PFR–separator–recycle polymerization systems. Chemical Engineering Science, 2003, 58, 2973-2984.                                      | 1.9 | 33        |
| 155 | Stable plantwide control of recycle systems. Computer Aided Chemical Engineering, 2003, 15, 726-731.                                                        | 0.3 | 2         |
| 156 | Unstable behaviour of plants with recycle. Computer Aided Chemical Engineering, 2003, 14, 431-436.                                                          | 0.3 | 0         |
| 157 | Non-linear behaviour of PFR-separator-recycle polymerization systems. Computer Aided Chemical Engineering, 2002, , 229-234.                                 | 0.3 | 1         |
| 158 | State multiplicity in CSTR–separator–recycle polymerisation systems. Chemical Engineering Science, 2002, 57, 535-546.                                       | 1.9 | 45        |