F Javier Garca De Abajo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4775173/f-javier-garcia-de-abajo-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

444
papers

37,945
papers

487
ext. papers

43,261
ext. citations

92
h-index

8.3
avg, IF

L-index

#	Paper	IF	Citations
444	Low-Loss Tunable Infrared Plasmons in the High-Mobility Perovskite (Ba,La)SnO Small, 2022, e210689	7 ₁₁	1
443	Active control of micrometer plasmon propagation in suspended graphene <i>Nature Communications</i> , 2022 , 13, 1465	17.4	2
442	Tunable planar focusing based on hyperbolic phonon polaritons in \(\text{HOO}\). Advanced Materials, 2022 , e2105590	24	6
441	Inelastic Mach-Zehnder Interferometry with Free Electrons <i>Physical Review Letters</i> , 2022 , 128, 147401	7.4	0
440	Probing Electronic States in Monolayer Semiconductors through Static and Transient Third-Harmonic Spectroscopies. <i>Advanced Materials</i> , 2021 , e2107104	24	Ο
439	Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures. <i>Physical Review Letters</i> , 2021 , 127, 157404	7.4	1
438	Modulation of cathodoluminescence emission by interference with external light 2021,		2
437	Nonlinear plasmonic response in atomically thin metal films. <i>Nanophotonics</i> , 2021 ,	6.3	1
436	Optical Excitations with Electron Beams: Challenges and Opportunities ACS Photonics, 2021, 8, 945-97	46.3	22
435	Modulation of Cathodoluminescence Emission by Interference with External Light. <i>ACS Nano</i> , 2021 , 15, 7290-7304	16.7	10
434	Optical Modulation of Electron Beams in Free Space. <i>Physical Review Letters</i> , 2021 , 126, 123901	7.4	7
433	Can Copper Nanostructures Sustain High-Quality Plasmons?. <i>Nano Letters</i> , 2021 , 21, 2444-2452	11.5	16
432	Complete coupling of focused light to surface polaritons. <i>Optica</i> , 2021 , 8, 520	8.6	1
431	Optical coherence transfer mediated by free electrons. <i>Science Advances</i> , 2021 , 7,	14.3	16
430	Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields. <i>Light: Science and Applications</i> , 2021 , 10, 82	16.7	14
429	Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets. <i>Optica</i> , 2021 , 8, 710	8.6	11
428	Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams. <i>ACS Nano</i> , 2021 , 15, 9890-9899	16.7	5

427	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. <i>Microscopy and Microanalysis</i> , 2021 , 27, 320-321	0.5	
426	Atomically-Precise Texturing of Hexagonal Boron Nitride Nanostripes. <i>Advanced Science</i> , 2021 , 8, e210	14556	1
425	Exploring electronic coupling of optical and phonon excitations at the nanoscale. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1202-1203	0.5	Ο
424	2-Grating Inelastic Free Electron Interferometry. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1474-1477	0.5	O
423	Giant enhancement of third-harmonic generation in graphene-metal heterostructures. <i>Nature Nanotechnology</i> , 2021 , 16, 318-324	28.7	9
422	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. <i>Nature Materials</i> , 2021 , 20, 43-48	27	34
421	Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. <i>ACS Nano</i> , 2021 , 15, 2219-2228	16.7	10
420	Rotational Doppler cooling and heating. Science Advances, 2021, 7,	14.3	3
419	Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics. <i>ACS Photonics</i> , 2021 , 8, 614-624	6.3	1
418	Anisotropic second-harmonic generation from monocrystalline gold flakes. <i>Optics Letters</i> , 2021 , 46, 833	3- 8 36	2
417	Generation, characterization, and manipulation of quantum correlations in electron beams. <i>Npj Quantum Information</i> , 2021 , 7,	8.6	1
416	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. <i>ACS Photonics</i> , 2021 , 8, 2320-2328	6.3	3
415	Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. <i>Small</i> , 2021 , 17, e2103404	11	6
414	Comment on "Free-Electron-Bound-Electron Resonant Interaction". <i>Physical Review Letters</i> , 2021 , 126, 019501	7.4	2
413	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities <i>Nano Letters</i> , 2021 ,	11.5	4
412	Electron Beam Aberration Correction Using Optical Fields. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2974	 -2974	
411	Thermal manipulation of plasmons in atomically thin films. Light: Science and Applications, 2020, 9, 87	16.7	14
410	Probing Chirality with Inelastic Electron-Light Scattering. <i>Nano Letters</i> , 2020 , 20, 4377-4383	11.5	5

409	Nonlinear Interactions between Free Electrons and Nanographenes. <i>Nano Letters</i> , 2020 , 20, 4792-4800	11.5	4
408	Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. <i>ACS Nano</i> , 2020 , 14, 7704-7713	16.7	43
407	Room Temperature Graphene Mid-Infrared Bolometer with a Broad Operational Wavelength Range. <i>ACS Photonics</i> , 2020 , 7, 1206-1215	6.3	19
406	Semimetals for high-performance photodetection. <i>Nature Materials</i> , 2020 , 19, 830-837	27	70
405	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. <i>Nano Letters</i> , 2020 , 20, 2973-	-2979	19
404	Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems. <i>Physical Review Research</i> , 2020 , 2,	3.9	7
403	Theory of electron energy-loss spectroscopy in atomically thin metallic films. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
402	Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. <i>Physical Review Research</i> , 2020 , 2,	3.9	13
401	Free-electron shaping using quantum light. <i>Optica</i> , 2020 , 7, 1820	8.6	13
400	Electron diffraction by vacuum fluctuations. <i>New Journal of Physics</i> , 2020 , 22, 103057	2.9	5
399	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. <i>Nano Letters</i> , 2020 , 20, 592-598	11.5	13
398	Anomalous Thermodiffusion of Electrons in Graphene. <i>Physical Review Letters</i> , 2020 , 125, 176802	7.4	О
397	Chemical identification through two-dimensional electron energy-loss spectroscopy. <i>Science Advances</i> , 2020 , 6, eabb4713	14.3	1
396	Electron Beam Aberration Correction Using Optical Near Fields. <i>Physical Review Letters</i> , 2020 , 125, 0308	B 9 .14	12
395	Ultrafast Topological Engineering in Metamaterials. <i>Physical Review Letters</i> , 2020 , 125, 037403	7.4	8
394	Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. <i>ACS Nano</i> , 2020 ,	16.7	19
393	Quantum Aspects of Electron-Light-Plasmon Interactions at the Atomic Scale. <i>Microscopy and Microanalysis</i> , 2020 , 26, 3026-3026	0.5	
392	Tunable free-electron X-ray radiation from van der Waals materials. <i>Nature Photonics</i> , 2020 , 14, 686-692	233.9	13

(2019-2020)

391	Electrically driven photon emission from individual atomic defects in monolayer WS. <i>Science Advances</i> , 2020 , 6,	14.3	21
390	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
389	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020 , 7, 1290-1296	6.3	8
388	Nonlinear Graphene Nanoplasmonics. <i>Accounts of Chemical Research</i> , 2019 , 52, 2536-2547	24.3	26
387	Single-Plasmon Thermo-Optical Switching in Graphene. <i>Nano Letters</i> , 2019 , 19, 3743-3750	11.5	15
386	Plasmonics in Atomically Thin Crystalline Silver Films. <i>ACS Nano</i> , 2019 , 13, 7771-7779	16.7	50
385	Holographic imaging of electromagnetic fields via electron-light quantum interference. <i>Science Advances</i> , 2019 , 5, eaav8358	14.3	30
384	Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. <i>Science Advances</i> , 2019 , 5, eaav8965	14.3	67
383	Quantum computing with graphene plasmons. Npj Quantum Information, 2019, 5,	8.6	29
382	Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. <i>Nature Materials</i> , 2019 , 18, 573-579	27	65
381	Tunable plasmons in ultrathin metal films. <i>Nature Photonics</i> , 2019 , 13, 328-333	33.9	103
380	Fundamental Limits to the Coupling between Light and 2D Polaritons by Small Scatterers. <i>ACS Nano</i> , 2019 , 13, 5184-5197	16.7	16
379	Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems. <i>Physical Review B</i> , 2019 , 99,	3.3	3
378	Gas identification with graphene plasmons. <i>Nature Communications</i> , 2019 , 10, 1131	17.4	91
377	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. <i>Physical Review Applied</i> , 2019 , 11,	4.3	16
376	Graphene: Free electron scattering within an inverted honeycomb lattice. <i>Physical Review B</i> , 2019 , 99,	3.3	5
375	Imaging the Renner-Teller effect using laser-induced electron diffraction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8173-8177	11.5	21
374	Magnetically activated rotational vacuum friction. <i>Physical Review A</i> , 2019 , 99,	2.6	4

373	Circular Dichroism in Rotating Particles. <i>Physical Review Letters</i> , 2019 , 123, 066803	7.4	3
372	Electron-beam spectroscopy for nanophotonics. <i>Nature Materials</i> , 2019 , 18, 1158-1171	27	96
371	Quantum effects in the acoustic plasmons of atomically thin heterostructures. <i>Optica</i> , 2019 , 6, 630	8.6	23
370	Quantum effects in the acoustic plasmons of atomically thin heterostructures: publisher note. <i>Optica</i> , 2019 , 6, 798	8.6	3
369	Probing quantum optical excitations with fast electrons. <i>Optica</i> , 2019 , 6, 1524	8.6	43
368	Visible Optical Resonances in Electrically Doped DNA. <i>ACS Photonics</i> , 2019 , 6, 932-938	6.3	1
367	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. <i>Ultramicroscopy</i> , 2019 , 203, 44-51	3.1	22
366	Manipulating chemistry through nanoparticle morphology. <i>Nanoscale Horizons</i> , 2019 , 5, 102-108	10.8	18
365	Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. <i>Advanced Materials</i> , 2018 , 30, e1704896	524	88
364	Enhanced graphene nonlinear response through geometrical plasmon focusing. <i>Applied Physics Letters</i> , 2018 , 112, 061107	3.4	2
363	Enhancement of Nonlinear Optical Phenomena by Localized Resonances. ACS Photonics, 2018, 5, 1521-	1 <i>1</i> 52 ₃ 7	5
362	meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. <i>ACS Photonics</i> , 2018 , 5, 759-764	6.3	51
361	Continuous-wave multiphoton photoemission from plasmonic nanostars. <i>Communications Physics</i> , 2018 , 1,	5.4	26
360	Ultrafast nonlinear optical response of Dirac fermions in graphene. <i>Nature Communications</i> , 2018 , 9, 1018	17.4	81
359	Transient nonlinear plasmonics in nanostructured graphene. <i>Optica</i> , 2018 , 5, 429	8.6	11
358	Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution. <i>ACS Nano</i> , 2018 , 12, 8436-8446	16.7	14
357	Photothermal Engineering of Graphene Plasmons. <i>Physical Review Letters</i> , 2018 , 121, 057404	7.4	15
356	Efficient orbital angular momentum transfer between plasmons and free electrons. <i>Physical Review B</i> , 2018 , 98,	3.3	25

355	Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. <i>MRS Bulletin</i> , 2018 , 43, 497-503	3.2	14
354	Attosecond coherent control of free-electron wave functions using semi-infinite light fields. <i>Nature Communications</i> , 2018 , 9, 2694	17.4	76
353	Efficient electrical detection of mid-infrared graphene plasmons at room temperature. <i>Nature Materials</i> , 2018 , 17, 986-992	27	84
352	Nonlinear Atom-Plasmon Interactions Enabled by Nanostructured Graphene. <i>Physical Review Letters</i> , 2018 , 121, 257403	7.4	16
351	Lasing and Amplification from Two-Dimensional Atom Arrays. <i>Physical Review Letters</i> , 2018 , 121, 16360	2 7.4	13
350	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. <i>Physical Review B</i> , 2018 , 98,	3.3	53
349	Plasmon-assisted high-harmonic generation in graphene. <i>Nature Communications</i> , 2017 , 8, 14380	17.4	95
348	Hybrid plasmonic nanoresonators as efficient solar heat shields. <i>Nano Energy</i> , 2017 , 37, 118-125	17.1	18
347	Double-layer graphene for enhanced tunable infrared plasmonics. <i>Light: Science and Applications</i> , 2017 , 6, e16277	16.7	103
346	Lateral Casimir Force on a Rotating Particle near a Planar Surface. <i>Physical Review Letters</i> , 2017 , 118, 133605	7.4	44
345	Ultrafast radiative heat transfer. <i>Nature Communications</i> , 2017 , 8, 2	17.4	80
344	Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. <i>ACS Photonics</i> , 2017 , 4, 329-337	6.3	92
343	Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. <i>ACS Photonics</i> , 2017 , 4, 2908-2915	6.3	9
342	Universal analytical modeling of plasmonic nanoparticles. <i>Chemical Society Reviews</i> , 2017 , 46, 6710-672	4 58.5	89
341	Plasmonics simulations including nonlocal effects using a boundary element method approach. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1740007	1.1	9
340	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. <i>ACS Nano</i> , 2017 , 11, 7915-7924	16.7	27
339	Analytical Modeling of Graphene Plasmons. ACS Photonics, 2017, 4, 3106-3114	6.3	40
338	Analytical description of the nonlinear plasmonic response in nanographene. <i>Physical Review B</i> , 2017 , 96,	3.3	17

337	Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study. <i>Nano Letters</i> , 2017 , 17, 5908-5913	11.5	30
336	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375	6.3	34
335	Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus. <i>Physical Review B</i> , 2017 , 96,	3.3	7
334	Topologically protected Dirac plasmons in a graphene superlattice. <i>Nature Communications</i> , 2017 , 8, 1243	17.4	43
333	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-733	35 16.7	54
332	Theory of graphene saturable absorption. <i>Physical Review B</i> , 2017 , 95,	3.3	89
331	Nonperturbative theory of graphene saturable absorption 2017,		2
330	Electron refraction at lateral atomic interfaces. <i>Journal of Applied Physics</i> , 2017 , 122, 195306	2.5	2
329	Electrical Detection of Single Graphene Plasmons. ACS Nano, 2016, 10, 8045-53	16.7	13
328	Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. <i>Physical Review B</i> , 2016 , 94,	3.3	8
327	Nonlinear Plasmonic Sensing with Nanographene. <i>Physical Review Letters</i> , 2016 , 117, 123904	7.4	42
326	Smith-Purcell radiation emission in aperiodic arrays. <i>Physical Review B</i> , 2016 , 94,	3.3	15
325	Electron diffraction by plasmon waves. <i>Physical Review B</i> , 2016 , 94,	3.3	32
324	Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. <i>Physical Review Letters</i> , 2016 , 116, 217401	7.4	30
323	Polaritons in van der Waals materials. <i>Science</i> , 2016 , 354,	33.3	514
322	Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. <i>Physical Review B</i> , 2016 , 94,	3.3	12
321	Imaging and controlling plasmonic interference fields at buried interfaces. <i>Nature Communications</i> , 2016 , 7, 13156	17.4	36
320	Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. <i>Scientific Reports</i> , 2016 , 6, 32144	4.9	33

319	Quantum Effects in the Nonlinear Response of Graphene Plasmons. ACS Nano, 2016, 10, 1995-2003	16.7	65
318	Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics, 2016, 3, 163	7 :6 46	98
317	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phase-Change Materials. <i>Advanced Optical Materials</i> , 2016 , 4, 1060-1066	8.1	53
316	Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. <i>Scientific Reports</i> , 2016 , 6, 29014	4.9	45
315	Self-organization of frozen light in near-zero-index media with cubic nonlinearity. <i>Scientific Reports</i> , 2016 , 6, 20088	4.9	18
314	Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals. <i>ACS Photonics</i> , 2016 , 3, 1194-1201	6.3	54
313	Molecular Plasmon-Phonon Coupling. <i>Nano Letters</i> , 2016 , 16, 6390-6395	11.5	12
312	Electrical control of optical emitter relaxation pathways enabled by graphene. <i>Nature Physics</i> , 2015 , 11, 281-287	16.2	85
311	Molecular Sensing with Tunable Graphene Plasmons. ACS Photonics, 2015, 2, 876-882	6.3	84
310	Molecular Plasmonics. <i>Nano Letters</i> , 2015 , 15, 6208-14	11.5	66
309	APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene. <i>Science</i> , 2015 , 349, 165-8	33.3	887
308	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. <i>Nano Letters</i> , 2015 , 15, 5427-37	11.5	105
307	Quantum nonlocal effects in individual and interacting graphene nanoribbons. <i>Light: Science and Applications</i> , 2015 , 4, e241-e241	16.7	41
306	Plasmonics in atomically thin materials. <i>Faraday Discussions</i> , 2015 , 178, 87-107	3.6	31
305	Resonant Visible Light Modulation with Graphene. ACS Photonics, 2015, 2, 550-558	6.3	61
304	Plasmon wave function of graphene nanoribbons. <i>New Journal of Physics</i> , 2015 , 17, 083013	2.9	17
303	Ultimate Limit of Light Extinction by Nanophotonic Structures. <i>Nano Letters</i> , 2015 , 15, 7633-8	11.5	19
302	Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240	6.3	19

301	Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays. <i>New Journal of Physics</i> , 2015 , 17, 083031	2.9	36
300	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. <i>Nano Letters</i> , 2015 , 15, 6946-51	11.5	125
299	Phonon excitation by electron beams in nanographenes. <i>Physical Review B</i> , 2015 , 92,	3.3	9
298	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. <i>Physical Review Letters</i> , 2015 , 115, 173601	7.4	39
297	Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. <i>Physical Review B</i> , 2015 , 91,	3.3	25
296	PlasmonPhonon Interactions in Topological Insulator Microrings. <i>Advanced Optical Materials</i> , 2015 , 3, 1257-1263	8.1	55
295	Propagation and localization of quantum dot emission along a gap-plasmonic transmission line. <i>Optics Express</i> , 2015 , 23, 29296-320	3.3	4
294	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-31	2 6.3	54
293	Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. <i>Nano Letters</i> , 2015 , 15, 1229-37	11.5	113
292	Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 2014, 4, 4674	4.9	40
291	3D plasmonic chiral colloids. <i>Nanoscale</i> , 2014 , 6, 2077-81	7.7	89
290	Graphene Plasmonics: Challenges and Opportunities. <i>ACS Photonics</i> , 2014 , 1, 135-152	6.3	817
289	Tunable plasmons in atomically thin gold nanodisks. <i>Nature Communications</i> , 2014 , 5, 3548	17.4	106
288	Active tunable absorption enhancement with graphene nanodisk arrays. <i>Nano Letters</i> , 2014 , 14, 299-30	411.5	477
287	Phonon-mediated mid-infrared photoresponse of graphene. <i>Nano Letters</i> , 2014 , 14, 6374-81	11.5	49
286	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. <i>Nanoscale</i> , 2014 , 6, 8368-75	5 ^{7.7}	71
285	Dichroism in the interaction between vortex electron beams, plasmons, and molecules. <i>Physical Review Letters</i> , 2014 , 113, 066102	7.4	58
284		7.4	

283	Plasmons in inhomogeneously doped neutral and charged graphene nanodisks. <i>Applied Physics Letters</i> , 2014 , 104, 131103	3.4	16
282	Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano, 2014 , 8, 9558	B -66 7	69
281	Toward ultimate nanoplasmonics modeling. ACS Nano, 2014, 8, 7559-70	16.7	104
2 80	Deterministic optical-near-field-assisted positioning of nitrogen-vacancy centers. <i>Nano Letters</i> , 2014 , 14, 1520-5	11.5	39
279	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 1134-1140	3.1	17
278	An optical fiber network oracle for NP-complete problems. <i>Light: Science and Applications</i> , 2014 , 3, e147	7- 16 61 4 7	33
277	Near-field nanoimprinting using colloidal monolayers. <i>Optics Express</i> , 2014 , 22, 8226-33	3.3	12
276	Electrically tunable nonlinear plasmonics in graphene nanoislands. <i>Nature Communications</i> , 2014 , 5, 572	25 7.4	117
275	Graphene optical-to-thermal converter. Applied Physics Letters, 2014, 105, 211102	3.4	13
274	The magnetic response of graphene split-ring metamaterials. <i>Light: Science and Applications</i> , 2013 , 2, e78-e78	16.7	107
273	Fast optical modulation of the fluorescence from a single nitrogen∏acancy centre. <i>Nature Physics</i> , 2013 , 9, 785-789	16.2	24
272	Single-photon nonlinear optics with graphene plasmons. <i>Physical Review Letters</i> , 2013 , 111, 247401	7.4	140
271	Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. <i>Nano Letters</i> , 2013 , 13, 6210-5	11.5	85
270	Theory of random nanoparticle layers in photovoltaic devices applied to self-aggregated metal samples. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 294-299	6.4	14
269	The planar parabolic optical antenna. <i>Nano Letters</i> , 2013 , 13, 188-93	11.5	30
268	Three-dimensional optical manipulation of a single electron spin. <i>Nature Nanotechnology</i> , 2013 , 8, 175-9	928.7	105
267	Plasmons driven by single electrons in graphene nanoislands. <i>Nanophotonics</i> , 2013 , 2, 139-151	6.3	38
266	Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies. <i>Physical Review B</i> , 2013 , 88,	3.3	8

265	Gated tunability and hybridization of localized plasmons in nanostructured graphene. <i>ACS Nano</i> , 2013 , 7, 2388-95	16.7	534
264	Applied physics. Graphene nanophotonics. <i>Science</i> , 2013 , 339, 917-8	33.3	104
263	Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. <i>Nano Letters</i> , 2013 , 13, 1736-42	11.5	346
262	Universal distance-scaling of nonradiative energy transfer to graphene. <i>Nano Letters</i> , 2013 , 13, 2030-5	11.5	172
261	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 641-7	6.4	69
260	Optical field enhancement by strong plasmon interaction in graphene nanostructures. <i>Physical Review Letters</i> , 2013 , 110, 187401	7.4	75
259	Ultrasound Transmission Through Periodically Perforated Plates. <i>Springer Series in Materials Science</i> , 2013 , 83-113	0.9	
258	Three-dimensional plasmonic chiral tetramers assembled by DNA origami. <i>Nano Letters</i> , 2013 , 13, 2128	- 3/3 1.5	228
257	Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 033116	2.5	18
256	Quantum junction plasmons in graphene dimers. Laser and Photonics Reviews, 2013, 7, 297-302	8.3	14
255	Plasmonic energy transfer in periodically doped graphene. New Journal of Physics, 2013, 15, 033042	2.9	22
254	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano, 2013, 7, 3635-43	16.7	89
253	Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano, 2013, 7, 11409-1	9 .6.7	67
252	Controlled interaction of surface quantum-well electronic states. <i>Nano Letters</i> , 2013 , 13, 6130-5	11.5	36
251	Magnetic and electric response of single subwavelength holes. <i>Physical Review B</i> , 2013 , 88,	3.3	30
250	Excitation of confined modes on particle arrays. <i>Optics Express</i> , 2013 , 21, 5636-42	3.3	11
249	Plasmon electron energy-gain spectroscopy. <i>New Journal of Physics</i> , 2013 , 15, 103021	2.9	33
248	Optical generation of intense ultrashort magnetic pulses at the nanoscale. <i>New Journal of Physics</i> , 2013 , 15, 113035	2.9	13

247	Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 501-9	3	13
246	Quantum finite-size effects in graphene plasmons. ACS Nano, 2012, 6, 1766-75	16.7	246
245	Negative refraction and backward waves in layered acoustic metamaterials. <i>Physical Review B</i> , 2012 , 86,	3.3	16
244	Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12688-	. 9 3.4	137
243	Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. <i>Nano Letters</i> , 2012 , 12, 4172-80	11.5	120
242	Rotational quantum friction. <i>Physical Review Letters</i> , 2012 , 109, 123604	7.4	80
241	Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. <i>ACS Nano</i> , 2012 , 6, 431-40	16.7	564
240	Low-loss terahertz superconducting plasmonics. <i>New Journal of Physics</i> , 2012 , 14, 115006	2.9	26
239	Plasmon blockade in nanostructured graphene. ACS Nano, 2012, 6, 1724-31	16.7	56
238	Anisotropic metamaterials for full control of acoustic waves. <i>Physical Review Letters</i> , 2012 , 108, 124301	7.4	192
237	Plasmon scattering from single subwavelength holes. <i>Physical Review Letters</i> , 2012 , 108, 127402	7.4	61
236	Plasmons in electrostatically doped graphene. <i>Applied Physics Letters</i> , 2012 , 100, 201105	3.4	62
235	Engineering surface waves in flat phononic plates. <i>Physical Review B</i> , 2012 , 85,	3.3	23
234	Complete optical absorption in periodically patterned graphene. <i>Physical Review Letters</i> , 2012 , 108, 047	′ 4 04	946
233	Optical nano-imaging of gate-tunable graphene plasmons. <i>Nature</i> , 2012 , 487, 77-81	50.4	1478
232	From nano to micro: synthesis and optical properties of homogeneous spheroidal gold particles and their superlattices. <i>Langmuir</i> , 2012 , 28, 8909-14	4	47
231	Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating. <i>Langmuir</i> , 2012 , 28, 9063-70	4	30
230	Temporal quantum control with graphene. New Journal of Physics, 2012, 14, 123020	2.9	20

229	Power transfer between neighboring planar waveguides. <i>Optics Express</i> , 2012 , 20, 3152-7	3.3	2
228	Looking through the mirror: optical microcavity-mirror image photonic interaction. <i>Optics Express</i> , 2012 , 20, 11247-55	3.3	14
227	Self-organization approach for THz polaritonic metamaterials. <i>Optics Express</i> , 2012 , 20, 14663-82	3.3	39
226	Quantitative imaging of the optical near field. Optics Express, 2012, 20, 22063-78	3.3	13
225	Magnetic polarization in the optical absorption of metallic nanoparticles. <i>Optics Express</i> , 2012 , 20, 2814	12352	9
224	Interacting plasmon and phonon polaritons in aligned nano- and microwires. <i>Optics Express</i> , 2012 , 20, 10879-87	3.3	23
223	Radiative heat transfer between neighboring particles. <i>Physical Review B</i> , 2012 , 86,	3.3	44
222	Nanoscale mapping of plasmons, photons, and excitons. <i>MRS Bulletin</i> , 2012 , 37, 39-46	3.2	15
221	Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators. <i>Nano Letters</i> , 2011 , 11, 372-6	11.5	36
220	Quantum plexcitonics: strongly interacting plasmons and excitons. <i>Nano Letters</i> , 2011 , 11, 2318-23	11.5	313
2 19	Reduced radiation losses in electron beam excited propagating plasmons. <i>Optics Express</i> , 2011 , 19, 187	13.320	2
218	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. <i>EPJ Applied Physics</i> , 2011 , 54, 33512	1.1	26
217	Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. <i>Wave Motion</i> , 2011 , 48, 235-242	1.8	23
216	Single-photon generation by electron beams. <i>Nano Letters</i> , 2011 , 11, 5099-103	11.5	23
215	Graphene plasmonics: a platform for strong light-matter interactions. <i>Nano Letters</i> , 2011 , 11, 3370-7	11.5	2008
215	Graphene plasmonics: a platform for strong light-matter interactions. <i>Nano Letters</i> , 2011 , 11, 3370-7 Spatial Nonlocality in the Optical Response of Metal Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19470-19475	11.5 3.8	2008
	Spatial Nonlocality in the Optical Response of Metal Nanoparticles. <i>Journal of Physical Chemistry C</i> ,		

211	Gap and Mie plasmons in individual silver nanospheres near a silver surface. Nano Letters, 2011, 11, 91-	5 11.5	109
210	Stimulated light emission and inelastic scattering by a classical linear system of rotating particles. <i>Physical Review Letters</i> , 2011 , 106, 213601	7.4	5
209	Microphotonic parabolic light directors fabricated by two-photon lithography. <i>Applied Physics Letters</i> , 2011 , 99, 151113	3.4	52
208	Symmetry breaking and gap opening in two-dimensional hexagonal lattices. <i>New Journal of Physics</i> , 2011 , 13, 013026	2.9	29
207	Ultraviolet optical near-fields of microspheres imprinted in phase change films. <i>Applied Physics Letters</i> , 2010 , 96, 193108	3.4	16
206	Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. <i>Physical Review B</i> , 2010 , 82,	3.3	14
205	Tuneable electron-beam-driven nanoscale light source. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 024012	1.7	17
204	Spectral imaging of individual split-ring resonators. <i>Physical Review Letters</i> , 2010 , 105, 255501	7.4	72
203	Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. <i>Physical Review B</i> , 2010 , 82,	3.3	152
202	Nanoscale control of optical heating in complex plasmonic systems. ACS Nano, 2010, 4, 709-16	16.7	484
201	Transmitting hertzian optical nanoantenna with free-electron feed. Nano Letters, 2010, 10, 3250-2	11.5	36
200	Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. <i>Nano Letters</i> , 2010 , 10, 902-7	11.5	93
199	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7336-7340	3.8	195
198	Vacuum friction in rotating particles. <i>Physical Review Letters</i> , 2010 , 105, 113601	7.4	71
197	Thermal and vacuum friction acting on rotating particles. <i>Physical Review A</i> , 2010 , 82,	2.6	38
196	Slow plasmonic slab waveguide as a superlens for visible light. <i>Physical Review B</i> , 2010 , 82,	3.3	8
195	Extraordinary all-dielectric light enhancement over large volumes. <i>Nano Letters</i> , 2010 , 10, 4450-55	11.5	27
194	Broadband Purcell enhancement in plasmonic ring cavities. <i>Physical Review B</i> , 2010 , 82,	3.3	60

193	Light Concentration at the Nanometer Scale. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2428-2434	6.4	258
192	Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. <i>Nano Letters</i> , 2010 , 10, 1859-63	11.5	114
191	Lateral engineering of surface states - towards surface-state nanoelectronics. <i>Nanoscale</i> , 2010 , 2, 717-2	1 7.7	23
190	Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. <i>Applied Physics Letters</i> , 2010 , 97, 164103	3.4	16
189	Nonlocal Effects in the Optical Response of Metal Nanoparticles 2010,		4
188	Ultrasmall mode volume plasmonic nanodisk resonators. <i>Nano Letters</i> , 2010 , 10, 1537-41	11.5	159
187	Optical excitations in electron microscopy. <i>Reviews of Modern Physics</i> , 2010 , 82, 209-275	40.5	935
186	Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	39
185	Optical emission from the interaction of fast electrons with metallic films containing a circular aperture: a study of radiative decoherence of fast electrons. <i>Physical Review Letters</i> , 2009 , 102, 237401	7.4	5
184	Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. <i>Applied Physics Letters</i> , 2009 , 95, 051906	3.4	30
183	Photonic binding in silicon-colloid microcavities. <i>Physical Review Letters</i> , 2009 , 103, 103902	7.4	15
182	Diacritical study of light, electrons and sound scattering by particles and holes. <i>New Journal of Physics</i> , 2009 , 11, 093013	2.9	25
181	Towards Femtojoule Nanoparticle Phase-Change Memory. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 03A065	1.4	12
180	Imprinting the optical near field of microstructures with nanometer resolution. <i>Small</i> , 2009 , 5, 1825-9	11	28
179	Light well: a tunable free-electron light source on a chip. <i>Physical Review Letters</i> , 2009 , 103, 113901	7.4	109
178	Robust plasmon waveguides in strongly interacting nanowire arrays. <i>Nano Letters</i> , 2009 , 9, 1285-9	11.5	92
177	Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagom[hetwork. <i>Nano Letters</i> , 2009 , 9, 3509-14	11.5	69
176	Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays. <i>Physical Review Letters</i> , 2009 , 102, 144301	7.4	64

(2008-2009)

175	Efficient generation of propagating plasmons by electron beams. <i>Nano Letters</i> , 2009 , 9, 1176-81	11.5	63
174	How grooves reflect and confine surfaceplasmon polaritons. <i>Optics Express</i> , 2009 , 17, 10385-92	3.3	48
173	Analytic coherent control of plasmon propagation in nanostructures. <i>Optics Express</i> , 2009 , 17, 14235-59	9 3.3	62
172	Near-field focusing with optical phase antennas. <i>Optics Express</i> , 2009 , 17, 17801-11	3.3	10
171	Confined collective excitations of self-standing and supported planar periodic particle arrays. <i>Optics Express</i> , 2009 , 17, 18826-35	3.3	24
170	Plasmonics in buried structures. <i>Optics Express</i> , 2009 , 17, 18866-77	3.3	2
169	Coupling of gap plasmons in multi-wire waveguides. <i>Optics Express</i> , 2009 , 17, 19401-13	3.3	22
168	Anisotropy and particle-size effects in nanostructured plasmonic metamaterials. <i>Optics Express</i> , 2009 , 17, 22012-22	3.3	22
167	Modal decomposition of surfaceplasmon whispering gallery resonators. <i>Nano Letters</i> , 2009 , 9, 3147-5	011.5	69
166	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18623-18631	3.8	63
165	Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. <i>Nano Letters</i> , 2009 , 9, 3387-91	11.5	259
164	Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. <i>Nano Letters</i> , 2009 , 9, 399-404	11.5	286
163	Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. <i>Physical Review B</i> , 2009 , 79,	3.3	118
162	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. <i>Physical Review B</i> , 2009 , 79,	3.3	95
161	Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4616-8	16.4	479
160	Omnidirectional absorption in nanostructured metal surfaces. <i>Nature Photonics</i> , 2008 , 2, 299-301	33.9	377
159	Extraordinary sound screening in perforated plates. <i>Physical Review Letters</i> , 2008 , 101, 084302	7.4	115
158	Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. Journal of Physical Chemistry C, 2008 , 112, 17983-17987	3.8	445

157	High-yield synthesis and optical response of gold nanostars. <i>Nanotechnology</i> , 2008 , 19, 015606	3.4	537
156	Near-field optical phase antennas for long-range plasmon coupling. <i>Nano Letters</i> , 2008 , 8, 2479-84	11.5	9
155	Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 2008, 8, 631-6	11.5	319
154	Substrate-enhanced infrared near-field spectroscopy. <i>Optics Express</i> , 2008 , 16, 1529-45	3.3	91
153	Plasmon guided modes in nanoparticle metamaterials. Optics Express, 2008, 16, 4499-506	3.3	36
152	Plasmon-based nanolenses assembled on a well-defined DNA template. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2750-1	16.4	132
151	Imaging optical near fields at metallic nanoscale voids. <i>Physical Review B</i> , 2008 , 78,	3.3	21
150	Probing the photonic local density of states with electron energy loss spectroscopy. <i>Physical Review Letters</i> , 2008 , 100, 106804	7.4	257
149	Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. <i>Applied Physics Letters</i> , 2008 , 92, 083110	3.4	91
148	Mapping plasmons in nanoantennas via cathodoluminescence. <i>New Journal of Physics</i> , 2008 , 10, 105009	2.9	92
147	Electron energy-gain spectroscopy. New Journal of Physics, 2008, 10, 073035	2.9	90
146	High-energy photoelectron diffraction: model calculations and future possibilities. <i>New Journal of Physics</i> , 2008 , 10, 113002	2.9	45
145	Mapping Surface Plasmons on a Single Metallic Nanoparticle 2008,		1
144	Interplay between electronic states and structure during Au faceting. <i>New Journal of Physics</i> , 2008 , 10, 113017	2.9	5
143	Plasmon excitations at diffuse interfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 304205	1.8	2
142	Optically tunable surfaces with trapped particles in microcavities. <i>Physical Review Letters</i> , 2008 , 101, 136802	7.4	33
141	Luminescence readout of nanoparticle phase state. <i>Applied Physics Letters</i> , 2008 , 92, 093112	3.4	6
140	Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. <i>Applied Physics Letters</i> , 2008 , 93, 011907	3.4	27

139	Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. <i>Physical Review B</i> , 2008 , 77,	3.3	21
138	Plasmon molecules in overlapping nanovoids. <i>Physical Review B</i> , 2008 , 77,	3.3	9
137	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. <i>Advanced Materials</i> , 2008 , 20, 4288-4293	24	103
136	Modelling the optical response of gold nanoparticles. <i>Chemical Society Reviews</i> , 2008 , 37, 1792-805	58.5	924
135	Combining electronic and optical spectroscopy at the nanometer scale in a STEM 2008 , 351-352		
134	Probing bright and dark surface plasmon modes in individual and coupled Au nanoparticles using a fast electron beam 2008 , 361-362		
133	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183-	-631 8 8	110
132	Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. <i>Nano Letters</i> , 2007 , 7, 3612-7	11.5	56
131	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119	3.4	144
130	Optical super-resolution through super-oscillations. <i>Journal of Optics</i> , 2007 , 9, S285-S288		91
129	Understanding Plasmons in Nanoscale Voids. <i>Nano Letters</i> , 2007 , 7, 2094-2100	11.5	163
128	Nanohole Plasmons in Optically Thin Gold Films. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1207-1212	3.8	136
127	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 144	13£ \$.6 5(0 99
126	Mapping surface plasmons on a single metallic nanoparticle. <i>Nature Physics</i> , 2007 , 3, 348-353	16.2	818
125	Adaptive subwavelength control of nano-optical fields. <i>Nature</i> , 2007 , 446, 301-4	50.4	424
124	Photonic absorption bands in the spectra of nanoporous metallic films. <i>Physics of the Solid State</i> , 2007 , 49, 1264-1267	0.8	
123	Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. <i>Physical Review B</i> , 2007 , 76,	3.3	81
122	Total light absorption in plasmonic nanostructures. <i>Journal of Optics</i> , 2007 , 9, S458-S462		17

121	Nanoscale force manipulation in the vicinity of a metal nanostructure. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2007 , 40, S249-S258	1.3	11
120	Adaptive Sub-Wavelength Control of Nano-Optical Fields 2007 , LWD2		
119	Strong terahertz absorption bands in a scaled plasmonic crystal. <i>Applied Physics Letters</i> , 2007 , 90, 25197	19.4	20
118	Size effects in angle-resolved photoelectron spectroscopy of free rare-gas clusters. <i>Physical Review A</i> , 2007 , 75,	2.6	25
117	Enhanced microwave transmission through quasicrystal hole arrays. <i>Applied Physics Letters</i> , 2007 , 91, 081503	3.4	36
116	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. <i>Microscopy and Microanalysis</i> , 2007 , 13,	0.5	10
115	The plasmon Talbot effect. <i>Optics Express</i> , 2007 , 15, 9692-700	3.3	97
114	Collective oscillations in optical matter. <i>Optics Express</i> , 2007 , 15, 11082-94	3.3	8
113	Colloquium: Light scattering by particle and hole arrays. <i>Reviews of Modern Physics</i> , 2007 , 79, 1267-1290	040.5	956
112	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13361-13366	3.8	90
111	Adaptive Control of Nanoscopic Photoelectron Emission. Springer Series in Chemical Physics, 2007, 633-0	6 3 53	
110	X-ray photoelectron diffraction study of Cu(111): Multiple scattering investigation. <i>Surface Science</i> , 2006 , 600, 380-385	1.8	10
109	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. <i>Advanced Materials</i> , 2006 , 18, 2529-2534	24	329
108	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects 2006 ,		4
107	Ultrafast adaptive optical near-field control. <i>Physical Review B</i> , 2006 , 73,	3.3	42
106	Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. <i>Physical Review B</i> , 2006 , 73,	3.3	69
105	Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. <i>Langmuir</i> , 2006 , 22, 7007-10	4	316
104	Site and lattice resonances in metallic hole arrays. <i>Optics Express</i> , 2006 , 14, 7-18	3.3	69

(2004-2006)

103	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. <i>Optics Express</i> , 2006 , 14, 1965-72	3.3	42
102	Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. <i>Optics Express</i> , 2006 , 14, 9988-99	3.3	658
101	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. <i>Optics Express</i> , 2006 , 14, 11964-71	3.3	17
100	Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O 1s emission from NiO. <i>Physical Review B</i> , 2006 , 74,	3.3	11
99	X-ray photoelectron diffraction study of ultrathin PbTiO3 films. <i>European Physical Journal B</i> , 2006 , 49, 141-146	1.2	12
98	Adaptive ultrafast nano-optics in a tight focus. Applied Physics B: Lasers and Optics, 2006, 84, 89-95	1.9	17
97	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. <i>Physical Review B</i> , 2005 , 71,	3.3	472
96	Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. <i>Physical Review B</i> , 2005 , 71,	3.3	38
95	Tunneling mechanism of light transmission through metallic films. <i>Physical Review Letters</i> , 2005 , 95, 06	67 / 10β	89
94	Electromagnetic surface modes in structured perfect-conductor surfaces. <i>Physical Review Letters</i> , 2005 , 95, 233901	7.4	179
93	Plasmon tunability in metallodielectric metamaterials. <i>Physical Review B</i> , 2005 , 71,	3.3	41
92	Void plasmons and total absorption of light in nanoporous metallic films. <i>Physical Review B</i> , 2005 , 71,	3.3	71
91	Total resonant absorption of light by plasmons on the nanoporous surface of a metal. <i>Physics of the Solid State</i> , 2005 , 47, 178	0.8	11
90	Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3912-3915		4
89	Giant light absorption by plasmons in a nanoporous metal film. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 362-366	1.6	7
88	Full transmission through perfect-conductor subwavelength hole arrays. <i>Physical Review E</i> , 2005 , 72, 016608	2.4	106
87	Nanoscopic ultrafast space-time-resolved spectroscopy. <i>Physical Review Letters</i> , 2005 , 95, 093901	7.4	104
86	Spontaneous light emission in complex nanostructures. <i>Physical Review B</i> , 2004 , 69,	3.3	99

85	Radiative decay of plasmons in a metallic nanoshell. <i>Physical Review B</i> , 2004 , 69,	3.3	68
84	Boundary effects in Cherenkov radiation. <i>Physical Review B</i> , 2004 , 69,	3.3	43
83	Momentum transfer to small particles by passing electron beams. <i>Physical Review B</i> , 2004 , 70,	3.3	22
82	Photoelectron diffraction study of the Si-rich 3CBiC(001)[BZ) structure. <i>Physical Review B</i> , 2004 , 70,	3.3	24
81	Electromagnetic forces and torques in nanoparticles irradiated by plane waves. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 3-9	2.1	22
80	Light scattering in gold nanorings. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 11-16	2.1	31
79	Spontaneous emission enhancement near nanoparticles. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 37-42	2.1	23
78	Accurate band mapping via photoemission from thin films. <i>Physical Review B</i> , 2004 , 69,	3.3	6
77	Control of spontaneous emission by complex nanostructures. <i>Optics Letters</i> , 2004 , 29, 1494-6	3	7
76	Femtosecond shaping of transverse and longitudinal light polarization. <i>Optics Letters</i> , 2004 , 29, 2187-9	3	10
75	Resonant-Coherent Excitation of Channeled Ions. Advances in Quantum Chemistry, 2004, 65-89	1.4	11
74	Cherenkov radiation effects in EELS for nanoporous alumina membranes. <i>Surface Science</i> , 2003 , 532-535, 461-467	1.8	3
73	Optical properties of gold nanorings. <i>Physical Review Letters</i> , 2003 , 90, 057401	7.4	842
72	Relativistic effects in EELS of nanoporous alumina membranes. <i>Physical Review B</i> , 2003 , 68,	3.3	11
71	Cherenkov effect as a probe of photonic nanostructures. <i>Physical Review Letters</i> , 2003 , 91, 143902	7.4	65
70	Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals. <i>Physical Review B</i> , 2003 , 68,	3.3	17
69	Electron energy loss in carbon nanostructures. <i>Physical Review B</i> , 2003 , 67,	3.3	19
68	Measurement of electron wave functions and confining potentials via photoemission. <i>Physical Review B</i> , 2003 , 67,	3.3	30

(2001-2003)

67	Electron energy loss and induced photon emission in photonic crystals. <i>Physical Review B</i> , 2003 , 67,	3.3	22
66	Nanoring formation by direct-write inorganic electron-beam lithography. <i>Applied Physics Letters</i> , 2003 , 83, 551-553	3.4	40
65	Development of the scattering theory of X-ray absorption and core level photoemission. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2002 , 126, 67-76	1.7	8
64	Circular dichroism in K-shell ionization from fixed-in-space CO and N2 molecules. <i>Physical Review Letters</i> , 2002 , 88, 073002	7.4	113
63	Lateral quantum wells at vicinal Au(111) studied with angle-resolved photoemission. <i>Physical Review B</i> , 2002 , 66,	3.3	76
62	MULTIPLE SCATTERING THEORY OF PHOTOELECTRON ANGULAR DISTRIBUTIONS FROM ORIENTED DIATOMIC MOLECULES. <i>Surface Review and Letters</i> , 2002 , 09, 1213-1217	1.1	3
61	Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: multiple scattering theory in non-spherical potentials. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2002 , 35, L359-L365	1.3	13
60	Light transmission through a single cylindrical hole in a metallic film. <i>Optics Express</i> , 2002 , 10, 1475-84	3.3	121
59	Retarded field calculation of electron energy loss in inhomogeneous dielectrics. <i>Physical Review B</i> , 2002 , 65,	3.3	538
58	Elastic scattering of low-energy electrons by randomly oriented and aligned molecules: Influence of full non-spherical potentials. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 107-113	1.7	4
57	Multiple scattering theory for non-spherical potentials: application to photoelectron angular distributions from oriented diatomic molecules and the study of shape resonances. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 99-105	1.7	16
56	Multi-atom resonant photoemission. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 1179-1189	1.7	14
55	K-shell photoionization of CO and N2: is there a link between the photoelectron angular distribution and the molecular decay dynamics?. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2001 , 34, 3669-3678	1.3	103
54	Multiatom resonant photoemission. <i>Physical Review B</i> , 2001 , 63,	3.3	58
53	Multiple scattering of electrons in solids and molecules: A cluster-model approach. <i>Physical Review B</i> , 2001 , 63,	3.3	129
52	Inelastic scattering of fast electrons in nanowires: A dielectric formalism approach. <i>Physical Review B</i> , 2001 , 64,	3.3	36
51	Electron confinement in surface states on a stepped gold surface revealed by angle-resolved photoemission. <i>Physical Review Letters</i> , 2001 , 87, 107601	7.4	108
50	Photon emission from silver particles induced by a high-energy electron beam. <i>Physical Review B</i> , 2001 , 64,	3.3	165

49	Circular dichroism in core photoelectron emission from (11) oxygen on W(110): experiment and multiple-scattering theory. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2000 , 106, 7-28	1.7	19
48	Photoelectron diffraction at the surface of amorphous carbon nitride. <i>Applied Physics Letters</i> , 2000 , 77, 3394-3396	3.4	8
47	Kinetics and atomic structure of O adsorption on W(110) from time- and state-resolved photoelectron spectroscopy and full-solid-angle photoelectron diffraction. <i>Surface Science</i> , 2000 , 459, 69-92	1.8	30
46	Smith-Purcell radiation emission in aligned nanoparticles. <i>Physical Review E</i> , 2000 , 61, 5743-52	2.4	31
45	Multiatom Resonant Photoemission: Theory and Systematics. <i>Physical Review Letters</i> , 1999 , 82, 4126-41	2 94	39
44	Multiple scattering of radiation in clusters of dielectrics. <i>Physical Review B</i> , 1999 , 60, 6086-6102	3.3	117
43	Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. <i>Physical Review Letters</i> , 1999 , 82, 2776-2779	7.4	85
42	Electron promotion in collisions of protons with a LiF surface. <i>Physical Review B</i> , 1999 , 59, 10950-10958	3.3	32
41	Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: Multiple-scattering approach. <i>Physical Review B</i> , 1999 , 60, 6103-6112	3.3	10
40	Valence-electron energy loss near edges, truncated slabs, and junctions. <i>Physical Review B</i> , 1999 , 60, 11149-11162	3.3	31
39	Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. <i>Physical Review B</i> , 1999 , 59, 3095-3107	3.3	108
38	Multiple atom resonant photoemission: a new technique for studying near-neighbor atomic identities and bonding. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1999 , 101-103, 647-65	2 ^{1.7}	11
37	Localized valence spectroscopy of complex nanostructures. <i>Journal of Electron Microscopy</i> , 1999 , 48, 673-679		4
36	Nonlinear corrections to the image potential of charged particles moving parallel to a metal surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 135, 97-102	1.2	4
35	Nonlinear effects in the kinetic electron emission induced by slow ions in metals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 135, 487-491	1.2	8
34	Coulomb explosion of H2+ in surface scattering. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 142, 473-485	1.2	3
33	Collective excitations in an infinite set of aligned spheres. Surface Science, 1998, 402-404, 418-423	1.8	3
32	Multi-atom resonant photoemission: A method for determining near-neighbor atomic identities and bonding. <i>Science</i> , 1998 , 281, 679-83	33.3	101

31	Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. <i>Physical Review Letters</i> , 1998 , 80, 5180-5183	7.4	258
30	Interface and bulk effects in the attenuation of low-energy electrons through CaF2 thin films. <i>Physical Review B</i> , 1998 , 58, 2233-2239	3.3	8
29	Dynamic screening of fast ions moving in solids. <i>Physical Review B</i> , 1998 , 57, 9329-9335	3.3	32
28	Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction. <i>Physical Review B</i> , 1998 , 58, 13121-13131	3.3	99
27	Contribution of the excitation of conduction band electrons to the kinetic electron emission induced by slow ions in metals. <i>Physical Review B</i> , 1998 , 58, 15838-15846	3.3	18
26	Surface effects in the energy loss of ions passing through a thin foil. <i>Physical Review A</i> , 1997 , 56, 2032-2	2046	12
25	Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface. <i>Physical Review Letters</i> , 1997 , 79, 4477-4480	7.4	33
24	Numerical simulation of electron energy loss near inhomogeneous dielectrics. <i>Physical Review B</i> , 1997 , 56, 15873-15884	3.3	122
23	Dependence of the stopping power on the surface response function. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 106-109	1.2	15
22	Coherent electron emission from high-energy ions in crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 1-6	1.2	7
21	Electron emission in slow collisions of protons with a LiF-surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 67-70	1.2	22
20	Ion-induced electron emission from simple metals: Charge state effects. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 23-26	1.2	3
19	Contribution of charge-transfer processes to ion-induced electron emission. <i>Physical Review B</i> , 1996 , 54, 17158-17165	3.3	22
18	Impact-parameter dependence of resonant-coherent excitation of channeled ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1996 , 115, 299-305	1.2	6
17	Energy loss of MeV protons specularly reflected from metal surfaces. <i>Physical Review B</i> , 1996 , 53, 1383	9 ₃ 1338.	50 ₃₇
16	Resonant-coherent excitation of channeled ions. <i>Physical Review Letters</i> , 1996 , 76, 1856-1859	7.4	20
15	The role of surface plasmons in ion-induced kinetic electron emission. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 98, 445-449	1.2	14
14	Dynamic screening of ions in solids. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 96, 583-	6 0 . <u>3</u>	68

13	Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence. <i>Physical Review B</i> , 1994 , 49, 2832-2845	3.3	8
12	Auger intra-atomic transitions in grazing atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 14589-14	-598,	13
11	Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 90, 222-226	1.2	5
10	Energy loss in grazing proton-surface collisions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 90, 252-256	1.2	9
9	Surface wake in the random-phase approximation. <i>Physical Review B</i> , 1993 , 48, 13399-13407	3.3	47
8	Resonant coherent excitation to the continuum in grazing ion-surface collisions. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, A267-A268	1.8	1
7	Ion-induced electron emission in grazing ion-surface collisions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 79, 15-20	1.2	19
6	Wake-potential formation in a thin foil. <i>Physical Review B</i> , 1992 , 45, 8771-8774	3.3	19
5	Wake potential in the vicinity of a surface. <i>Physical Review B</i> , 1992 , 46, 2663-2675	3.3	117
4	Electron emission induced by resonant coherent ion-surface interaction at grazing incidence. <i>Physical Review Letters</i> , 1992 , 69, 2364-2367	7.4	26
3	Wake potential and wake binding energy for protons and antiprotons. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1990 , 48, 25-28	1.2	4
2	Overview of core and valence photoemission50-115		4
7	Simple Mathematics on Covid-19 Expansion		2