F Javier Garca De Abajo

List of Publications by Citations

Source: https://exaly.com/author-pdf/4775173/f-javier-garcia-de-abajo-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

444 papers

37,945 citations

92 h-index 185 g-index

487 ext. papers

43,261 ext. citations

8.3 avg, IF

L-index

#	Paper	IF	Citations
444	Graphene plasmonics: a platform for strong light-matter interactions. <i>Nano Letters</i> , 2011 , 11, 3370-7	11.5	2008
443	Optical nano-imaging of gate-tunable graphene plasmons. <i>Nature</i> , 2012 , 487, 77-81	50.4	1478
442	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
441	Colloquium: Light scattering by particle and hole arrays. Reviews of Modern Physics, 2007, 79, 1267-129	040.5	956
440	Complete optical absorption in periodically patterned graphene. <i>Physical Review Letters</i> , 2012 , 108, 04	7 <i>4</i> 04	946
439	Optical excitations in electron microscopy. <i>Reviews of Modern Physics</i> , 2010 , 82, 209-275	40.5	935
438	Modelling the optical response of gold nanoparticles. <i>Chemical Society Reviews</i> , 2008 , 37, 1792-805	58.5	924
437	APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-8	33.3	887
436	Optical properties of gold nanorings. <i>Physical Review Letters</i> , 2003 , 90, 057401	7.4	842
435	Mapping surface plasmons on a single metallic nanoparticle. <i>Nature Physics</i> , 2007 , 3, 348-353	16.2	818
434	Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 2014, 1, 135-152	6.3	817
433	Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. <i>Optics Express</i> , 2006 , 14, 9988-99	3.3	658
432	Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. <i>ACS Nano</i> , 2012 , 6, 431-40	16.7	564
431	Retarded field calculation of electron energy loss in inhomogeneous dielectrics. <i>Physical Review B</i> , 2002 , 65,	3.3	538
430	High-yield synthesis and optical response of gold nanostars. <i>Nanotechnology</i> , 2008 , 19, 015606	3.4	537
429	Gated tunability and hybridization of localized plasmons in nanostructured graphene. <i>ACS Nano</i> , 2013 , 7, 2388-95	16.7	534
428	Polaritons in van der Waals materials. <i>Science</i> , 2016 , 354,	33.3	514

427	Nanoscale control of optical heating in complex plasmonic systems. ACS Nano, 2010, 4, 709-16	16.7	484
426	Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4616-8	16.4	479
425	Active tunable absorption enhancement with graphene nanodisk arrays. <i>Nano Letters</i> , 2014 , 14, 299-30	411.5	477
424	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. <i>Physical Review B</i> , 2005 , 71,	3.3	472
423	Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. Journal of Physical Chemistry C, 2008 , 112, 17983-17987	3.8	445
422	Adaptive subwavelength control of nano-optical fields. <i>Nature</i> , 2007 , 446, 301-4	50.4	424
421	Omnidirectional absorption in nanostructured metal surfaces. <i>Nature Photonics</i> , 2008 , 2, 299-301	33.9	377
420	Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. <i>Nano Letters</i> , 2013 , 13, 1736-42	11.5	346
419	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. <i>Advanced Materials</i> , 2006 , 18, 2529-2534	24	329
418	Mapping the plasmon resonances of metallic nanoantennas. <i>Nano Letters</i> , 2008 , 8, 631-6	11.5	319
417	Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. <i>Langmuir</i> , 2006 , 22, 7007-10	4	316
416	Quantum plexcitonics: strongly interacting plasmons and excitons. <i>Nano Letters</i> , 2011 , 11, 2318-23	11.5	313
415	Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. <i>Nano Letters</i> , 2009 , 9, 399-404	11.5	286
414	Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. <i>Nano Letters</i> , 2009 , 9, 3387-91	11.5	259
413	Light Concentration at the Nanometer Scale. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2428-2434	6.4	258
412	Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. <i>Physical Review Letters</i> , 1998 , 80, 5180-5183	7.4	258
411	Probing the photonic local density of states with electron energy loss spectroscopy. <i>Physical Review Letters</i> , 2008 , 100, 106804	7.4	257
410	Quantum finite-size effects in graphene plasmons. ACS Nano, 2012 , 6, 1766-75	16.7	246

409	Three-dimensional plasmonic chiral tetramers assembled by DNA origami. <i>Nano Letters</i> , 2013 , 13, 2128-	- 3 131.5	228
408	Spatial Nonlocality in the Optical Response of Metal Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19470-19475	3.8	221
407	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7336-7340	3.8	195
406	Anisotropic metamaterials for full control of acoustic waves. <i>Physical Review Letters</i> , 2012 , 108, 124301	7.4	192
405	Electromagnetic surface modes in structured perfect-conductor surfaces. <i>Physical Review Letters</i> , 2005 , 95, 233901	7.4	179
404	Universal distance-scaling of nonradiative energy transfer to graphene. <i>Nano Letters</i> , 2013 , 13, 2030-5	11.5	172
403	Photon emission from silver particles induced by a high-energy electron beam. <i>Physical Review B</i> , 2001 , 64,	3.3	165
402	Understanding Plasmons in Nanoscale Voids. <i>Nano Letters</i> , 2007 , 7, 2094-2100	11.5	163
401	Ultrasmall mode volume plasmonic nanodisk resonators. <i>Nano Letters</i> , 2010 , 10, 1537-41	11.5	159
400	Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. <i>Physical Review B</i> , 2010 , 82,	3.3	152
399	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119	3.4	144
398	Single-photon nonlinear optics with graphene plasmons. <i>Physical Review Letters</i> , 2013 , 111, 247401	7.4	140
397	Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12688-	- 1 3·4	137
396	Nanohole Plasmons in Optically Thin Gold Films. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1207-1212	3.8	136
395	Plasmon-based nanolenses assembled on a well-defined DNA template. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2750-1	16.4	132
394	Multiple scattering of electrons in solids and molecules: A cluster-model approach. <i>Physical Review B</i> , 2001 , 63,	3.3	129
393	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. <i>Nano Letters</i> , 2015 , 15, 6946-51	11.5	125
392	Numerical simulation of electron energy loss near inhomogeneous dielectrics. <i>Physical Review B</i> , 1997 , 56, 15873-15884	3.3	122

391	Light transmission through a single cylindrical hole in a metallic film. Optics Express, 2002, 10, 1475-84	3.3	121
390	Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. <i>Nano Letters</i> , 2012 , 12, 4172-80	11.5	120
389	Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. <i>Physical Review B</i> , 2009 , 79,	3.3	118
388	Electrically tunable nonlinear plasmonics in graphene nanoislands. <i>Nature Communications</i> , 2014 , 5, 572	257.4	117
387	Multiple scattering of radiation in clusters of dielectrics. <i>Physical Review B</i> , 1999 , 60, 6086-6102	3.3	117
386	Wake potential in the vicinity of a surface. <i>Physical Review B</i> , 1992 , 46, 2663-2675	3.3	117
385	Extraordinary sound screening in perforated plates. <i>Physical Review Letters</i> , 2008 , 101, 084302	7.4	115
384	Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. <i>Nano Letters</i> , 2010 , 10, 1859-63	11.5	114
383	Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. <i>Nano Letters</i> , 2015 , 15, 1229-37	11.5	113
382	Circular dichroism in K-shell ionization from fixed-in-space CO and N2 molecules. <i>Physical Review Letters</i> , 2002 , 88, 073002	7.4	113
381	Optical Properties of Platinum-Coated Gold Nanorods. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6183-	-631 8 8	110
380	Gap and Mie plasmons in individual silver nanospheres near a silver surface. <i>Nano Letters</i> , 2011 , 11, 91-	5 11.5	109
379	Light well: a tunable free-electron light source on a chip. Physical Review Letters, 2009, 103, 113901	7.4	109
378	Electron confinement in surface states on a stepped gold surface revealed by angle-resolved photoemission. <i>Physical Review Letters</i> , 2001 , 87, 107601	7.4	108
377	Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. <i>Physical Review B</i> , 1999 , 59, 3095-3107	3.3	108
376	The magnetic response of graphene split-ring metamaterials. <i>Light: Science and Applications</i> , 2013 , 2, e78-e78	16.7	107
375	Tunable plasmons in atomically thin gold nanodisks. <i>Nature Communications</i> , 2014 , 5, 3548	17.4	106
374	Full transmission through perfect-conductor subwavelength hole arrays. <i>Physical Review E</i> , 2005 , 72, 016608	2.4	106

373	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. <i>Nano Letters</i> , 2015 , 15, 5427-37	11.5	105
372	Three-dimensional optical manipulation of a single electron spin. Nature Nanotechnology, 2013, 8, 175-	928.7	105
371	Toward ultimate nanoplasmonics modeling. ACS Nano, 2014 , 8, 7559-70	16.7	104
370	Applied physics. Graphene nanophotonics. <i>Science</i> , 2013 , 339, 917-8	33.3	104
369	Nanoscopic ultrafast space-time-resolved spectroscopy. <i>Physical Review Letters</i> , 2005 , 95, 093901	7.4	104
368	Double-layer graphene for enhanced tunable infrared plasmonics. <i>Light: Science and Applications</i> , 2017 , 6, e16277	16.7	103
367	Tunable plasmons in ultrathin metal films. <i>Nature Photonics</i> , 2019 , 13, 328-333	33.9	103
366	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. <i>Advanced Materials</i> , 2008 , 20, 4288-4293	24	103
365	K-shell photoionization of CO and N2: is there a link between the photoelectron angular distribution and the molecular decay dynamics?. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2001 , 34, 3669-3678	1.3	103
364	Multi-atom resonant photoemission: A method for determining near-neighbor atomic identities and bonding. <i>Science</i> , 1998 , 281, 679-83	33.3	101
363	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 144	13£\$. 6 5	0 99
362	Spontaneous light emission in complex nanostructures. <i>Physical Review B</i> , 2004 , 69,	3.3	99
361	Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction. <i>Physical Review B</i> , 1998 , 58, 13121-13131	3.3	99
360	Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics, 2016, 3, 163	7-d. 6 46	98
359	The plasmon Talbot effect. <i>Optics Express</i> , 2007 , 15, 9692-700	3.3	97
358	Electron-beam spectroscopy for nanophotonics. <i>Nature Materials</i> , 2019 , 18, 1158-1171	27	96
357	Plasmon-assisted high-harmonic generation in graphene. <i>Nature Communications</i> , 2017 , 8, 14380	17.4	95
356	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. <i>Physical Review B</i> , 2009 , 79,	3.3	95

355	Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. <i>Nano Letters</i> , 2010 , 10, 902-7	11.5	93
354	Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. <i>ACS Photonics</i> , 2017 , 4, 329-337	6.3	92
353	Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Letters, 2009, 9, 1285-9	11.5	92
352	Mapping plasmons in nanoantennas via cathodoluminescence. New Journal of Physics, 2008, 10, 105009	2.9	92
351	Gas identification with graphene plasmons. <i>Nature Communications</i> , 2019 , 10, 1131	17.4	91
350	Substrate-enhanced infrared near-field spectroscopy. <i>Optics Express</i> , 2008 , 16, 1529-45	3.3	91
349	Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. <i>Applied Physics Letters</i> , 2008 , 92, 083110	3.4	91
348	Optical super-resolution through super-oscillations. <i>Journal of Optics</i> , 2007 , 9, S285-S288		91
347	Electron energy-gain spectroscopy. New Journal of Physics, 2008, 10, 073035	2.9	90
346	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13361-13366	3.8	90
345	3D plasmonic chiral colloids. <i>Nanoscale</i> , 2014 , 6, 2077-81	7.7	89
344	Universal analytical modeling of plasmonic nanoparticles. Chemical Society Reviews, 2017, 46, 6710-672	458.5	89
343	Theory of graphene saturable absorption. <i>Physical Review B</i> , 2017 , 95,	3.3	89
342	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano, 2013, 7, 3635-43	16.7	89
341	Tunneling mechanism of light transmission through metallic films. <i>Physical Review Letters</i> , 2005 , 95, 067	7 / 10/3	89
340	Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. <i>Advanced Materials</i> , 2018 , 30, e1704896	524	88
339	Electrical control of optical emitter relaxation pathways enabled by graphene. <i>Nature Physics</i> , 2015 , 11, 281-287	16.2	85
338	Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. <i>Nano Letters</i> , 2013 , 13, 6210-5	11.5	85

337	Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. <i>Physical Review Letters</i> , 1999 , 82, 2776-2779	7.4	85
336	Molecular Sensing with Tunable Graphene Plasmons. <i>ACS Photonics</i> , 2015 , 2, 876-882	6.3	84
335	Efficient electrical detection of mid-infrared graphene plasmons at room temperature. <i>Nature Materials</i> , 2018 , 17, 986-992	27	84
334	Ultrafast nonlinear optical response of Dirac fermions in graphene. <i>Nature Communications</i> , 2018 , 9, 1018	17.4	81
333	Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. <i>Physical Review B</i> , 2007 , 76,	3.3	81
332	Ultrafast radiative heat transfer. <i>Nature Communications</i> , 2017 , 8, 2	17.4	80
331	Rotational quantum friction. <i>Physical Review Letters</i> , 2012 , 109, 123604	7.4	80
330	Attosecond coherent control of free-electron wave functions using semi-infinite light fields. <i>Nature Communications</i> , 2018 , 9, 2694	17.4	76
329	Lateral quantum wells at vicinal Au(111) studied with angle-resolved photoemission. <i>Physical Review B</i> , 2002 , 66,	3.3	76
328	Optical field enhancement by strong plasmon interaction in graphene nanostructures. <i>Physical Review Letters</i> , 2013 , 110, 187401	7.4	75
327	Spectral imaging of individual split-ring resonators. <i>Physical Review Letters</i> , 2010 , 105, 255501	7.4	72
326	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. <i>Nanoscale</i> , 2014 , 6, 8368-75	5 ^{7.7}	71
325	Vacuum friction in rotating particles. <i>Physical Review Letters</i> , 2010 , 105, 113601	7·4	71
324	Void plasmons and total absorption of light in nanoporous metallic films. <i>Physical Review B</i> , 2005 , 71,	3.3	71
323	Semimetals for high-performance photodetection. <i>Nature Materials</i> , 2020 , 19, 830-837	27	70
322	Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano, 2014, 8, 9558	B- 66 .7	69
321	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 641-7	6.4	69
320	Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagom[hetwork. <i>Nano Letters</i> , 2009 , 9, 3509-14	11.5	69

(2015-2009)

319	Modal decomposition of surfaceplasmon whispering gallery resonators. Nano Letters, 2009, 9, 3147-50	011.5	69
318	Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. <i>Physical Review B</i> , 2006 , 73,	3.3	69
317	Site and lattice resonances in metallic hole arrays. Optics Express, 2006, 14, 7-18	3.3	69
316	Radiative decay of plasmons in a metallic nanoshell. <i>Physical Review B</i> , 2004 , 69,	3.3	68
315	Dynamic screening of ions in solids. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 96, 583-6	5 0 3	68
314	Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. <i>Science Advances</i> , 2019 , 5, eaav8965	14.3	67
313	Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano, 2013, 7, 11409-1	9 16.7	67
312	Molecular Plasmonics. <i>Nano Letters</i> , 2015 , 15, 6208-14	11.5	66
311	Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. <i>Nature Materials</i> , 2019 , 18, 573-579	27	65
310	Quantum Effects in the Nonlinear Response of Graphene Plasmons. ACS Nano, 2016, 10, 1995-2003	16.7	65
309	Cherenkov effect as a probe of photonic nanostructures. <i>Physical Review Letters</i> , 2003 , 91, 143902	7.4	65
308	Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays. <i>Physical Review Letters</i> , 2009 , 102, 144301	7.4	64
307	Efficient generation of propagating plasmons by electron beams. <i>Nano Letters</i> , 2009 , 9, 1176-81	11.5	63
306	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18623-18631	3.8	63
305	Plasmons in electrostatically doped graphene. Applied Physics Letters, 2012, 100, 201105	3.4	62
304	Tunable quantum dot arrays formed from self-assembled metal-organic networks. <i>Physical Review Letters</i> , 2011 , 106, 026802	7.4	62
303	Analytic coherent control of plasmon propagation in nanostructures. <i>Optics Express</i> , 2009 , 17, 14235-59	3.3	62
302	Resonant Visible Light Modulation with Graphene. ACS Photonics, 2015, 2, 550-558	6.3	61

301	Plasmon scattering from single subwavelength holes. <i>Physical Review Letters</i> , 2012 , 108, 127402	7.4	61
300	Broadband Purcell enhancement in plasmonic ring cavities. <i>Physical Review B</i> , 2010 , 82,	3.3	60
299	Dichroism in the interaction between vortex electron beams, plasmons, and molecules. <i>Physical Review Letters</i> , 2014 , 113, 066102	7.4	58
298	Multiatom resonant photoemission. <i>Physical Review B</i> , 2001 , 63,	3.3	58
297	Plasmon blockade in nanostructured graphene. ACS Nano, 2012 , 6, 1724-31	16.7	56
296	Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. <i>Nano Letters</i> , 2007 , 7, 3612-7	11.5	56
295	Plasmon P honon Interactions in Topological Insulator Microrings. <i>Advanced Optical Materials</i> , 2015 , 3, 1257-1263	8.1	55
294	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017 , 11, 7321-733	5 16.7	54
293	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-31	126.3	54
292	Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals. <i>ACS Photonics</i> , 2016 , 3, 1194-1201	6.3	54
291	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phase-Change Materials. <i>Advanced Optical Materials</i> , 2016 , 4, 1060-1066	8.1	53
290	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. <i>Physical Review B</i> , 2018 , 98,	3.3	53
289	Microphotonic parabolic light directors fabricated by two-photon lithography. <i>Applied Physics Letters</i> , 2011 , 99, 151113	3.4	52
288	meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. <i>ACS Photonics</i> , 2018 , 5, 759-764	6.3	51
287	Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano, 2019, 13, 7771-7779	16.7	50
286	Phonon-mediated mid-infrared photoresponse of graphene. <i>Nano Letters</i> , 2014 , 14, 6374-81	11.5	49
285	How grooves reflect and confine surfaceplasmon polaritons. <i>Optics Express</i> , 2009 , 17, 10385-92	3.3	48
284	Extraordinary absorption of decorated undoped graphene. <i>Physical Review Letters</i> , 2014 , 112, 077401	7.4	47

(2003-2012)

283	From nano to micro: synthesis and optical properties of homogeneous spheroidal gold particles and their superlattices. <i>Langmuir</i> , 2012 , 28, 8909-14	4	47
282	Surface wake in the random-phase approximation. <i>Physical Review B</i> , 1993 , 48, 13399-13407	3.3	47
281	High-energy photoelectron diffraction: model calculations and future possibilities. <i>New Journal of Physics</i> , 2008 , 10, 113002	2.9	45
280	Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. <i>Scientific Reports</i> , 2016 , 6, 29014	4.9	45
279	Lateral Casimir Force on a Rotating Particle near a Planar Surface. <i>Physical Review Letters</i> , 2017 , 118, 133605	7.4	44
278	Radiative heat transfer between neighboring particles. <i>Physical Review B</i> , 2012 , 86,	3.3	44
277	Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. <i>ACS Nano</i> , 2020 , 14, 7704-7713	16.7	43
276	Topologically protected Dirac plasmons in a graphene superlattice. <i>Nature Communications</i> , 2017 , 8, 1243	17.4	43
275	Boundary effects in Cherenkov radiation. <i>Physical Review B</i> , 2004 , 69,	3.3	43
274	Probing quantum optical excitations with fast electrons. <i>Optica</i> , 2019 , 6, 1524	8.6	43
273	Nonlinear Plasmonic Sensing with Nanographene. <i>Physical Review Letters</i> , 2016 , 117, 123904	7.4	42
272	Ultrafast adaptive optical near-field control. <i>Physical Review B</i> , 2006 , 73,	3.3	42
271	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. <i>Optics Express</i> , 2006 , 14, 1965-72	3.3	42
270	Quantum nonlocal effects in individual and interacting graphene nanoribbons. <i>Light: Science and Applications</i> , 2015 , 4, e241-e241	16.7	41
269	Plasmon tunability in metallodielectric metamaterials. <i>Physical Review B</i> , 2005 , 71,	3.3	41
269 268	Plasmon tunability in metallodielectric metamaterials. <i>Physical Review B</i> , 2005 , 71, Extraordinary absorption of sound in porous lamella-crystals. <i>Scientific Reports</i> , 2014 , 4, 4674	3·3 4·9	40

265	Deterministic optical-near-field-assisted positioning of nitrogen-vacancy centers. <i>Nano Letters</i> , 2014 , 14, 1520-5	11.5	39
264	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. <i>Physical Review Letters</i> , 2015 , 115, 173601	7.4	39
263	Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	39
262	Self-organization approach for THz polaritonic metamaterials. <i>Optics Express</i> , 2012 , 20, 14663-82	3.3	39
261	Multiatom Resonant Photoemission: Theory and Systematics. <i>Physical Review Letters</i> , 1999 , 82, 4126-41	2/9 4	39
2 60	Plasmons driven by single electrons in graphene nanoislands. <i>Nanophotonics</i> , 2013 , 2, 139-151	6.3	38
259	Thermal and vacuum friction acting on rotating particles. <i>Physical Review A</i> , 2010 , 82,	2.6	38
258	Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. <i>Physical Review B</i> , 2005 , 71,	3.3	38
257	Energy loss of MeV protons specularly reflected from metal surfaces. <i>Physical Review B</i> , 1996 , 53, 1383	9313385	5037
256	Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays. <i>New Journal of Physics</i> , 2015 , 17, 083031	2.9	36
255	Imaging and controlling plasmonic interference fields at buried interfaces. <i>Nature Communications</i> , 2016 , 7, 13156	17.4	36
254	Controlled interaction of surface quantum-well electronic states. <i>Nano Letters</i> , 2013 , 13, 6130-5	11.5	36
253	Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators. <i>Nano Letters</i> , 2011 , 11, 372-6	11.5	36
252	Transmitting hertzian optical nanoantenna with free-electron feed. Nano Letters, 2010, 10, 3250-2	11.5	36
251	Plasmon guided modes in nanoparticle metamaterials. <i>Optics Express</i> , 2008 , 16, 4499-506	3.3	36
250	Enhanced microwave transmission through quasicrystal hole arrays. <i>Applied Physics Letters</i> , 2007 , 91, 081503	3.4	36
249	Inelastic scattering of fast electrons in nanowires: A dielectric formalism approach. <i>Physical Review B</i> , 2001 , 64,	3.3	36
248	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375	6.3	34

247	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. <i>Nature Materials</i> , 2021 , 20, 43-48	27	34
246	Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. <i>Scientific Reports</i> , 2016 , 6, 32144	4.9	33
245	An optical fiber network oracle for NP-complete problems. <i>Light: Science and Applications</i> , 2014 , 3, e14	7- <u>16</u> 61 / 17	33
244	Plasmon electron energy-gain spectroscopy. <i>New Journal of Physics</i> , 2013 , 15, 103021	2.9	33
243	Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface. <i>Physical Review Letters</i> , 1997 , 79, 4477-4480	7.4	33
242	Optically tunable surfaces with trapped particles in microcavities. <i>Physical Review Letters</i> , 2008 , 101, 136802	7.4	33
241	Electron diffraction by plasmon waves. <i>Physical Review B</i> , 2016 , 94,	3.3	32
240	Dynamic screening of fast ions moving in solids. <i>Physical Review B</i> , 1998 , 57, 9329-9335	3.3	32
239	Electron promotion in collisions of protons with a LiF surface. <i>Physical Review B</i> , 1999 , 59, 10950-10958	3.3	32
238	Plasmonics in atomically thin materials. <i>Faraday Discussions</i> , 2015 , 178, 87-107	3.6	31
237	Light scattering in gold nanorings. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 11-16	2.1	31
236	Smith-Purcell radiation emission in aligned nanoparticles. <i>Physical Review E</i> , 2000 , 61, 5743-52	2.4	31
235	Valence-electron energy loss near edges, truncated slabs, and junctions. <i>Physical Review B</i> , 1999 , 60, 11149-11162	3.3	31
234	Holographic imaging of electromagnetic fields via electron-light quantum interference. <i>Science Advances</i> , 2019 , 5, eaav8358	14.3	30
233	Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. <i>Physical Review Letters</i> , 2016 , 116, 217401	7.4	30
232	The planar parabolic optical antenna. <i>Nano Letters</i> , 2013 , 13, 188-93	11.5	30
231	Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A´Near-Field Imaging Study. <i>Nano Letters</i> , 2017 , 17, 5908-5913	11.5	30
230	Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating. <i>Langmuir</i> , 2012 , 28, 9063-70	4	30

229	Magnetic and electric response of single subwavelength holes. <i>Physical Review B</i> , 2013 , 88,	3.3	30
228	Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. <i>Applied Physics Letters</i> , 2009 , 95, 051906	3.4	30
227	Measurement of electron wave functions and confining potentials via photoemission. <i>Physical Review B</i> , 2003 , 67,	3.3	30
226	Kinetics and atomic structure of O adsorption on W(110) from time- and state-resolved photoelectron spectroscopy and full-solid-angle photoelectron diffraction. <i>Surface Science</i> , 2000 , 459, 69-92	1.8	30
225	Quantum computing with graphene plasmons. Npj Quantum Information, 2019, 5,	8.6	29
224	Symmetry breaking and gap opening in two-dimensional hexagonal lattices. <i>New Journal of Physics</i> , 2011 , 13, 013026	2.9	29
223	Imprinting the optical near field of microstructures with nanometer resolution. <i>Small</i> , 2009 , 5, 1825-9	11	28
222	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. <i>ACS Nano</i> , 2017 , 11, 7915-7924	16.7	27
221	Extraordinary all-dielectric light enhancement over large volumes. <i>Nano Letters</i> , 2010 , 10, 4450-55	11.5	27
220	Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. <i>Applied Physics Letters</i> , 2008 , 93, 011907	3.4	27
219	Nonlinear Graphene Nanoplasmonics. Accounts of Chemical Research, 2019, 52, 2536-2547	24.3	26
218	Continuous-wave multiphoton photoemission from plasmonic nanostars. <i>Communications Physics</i> , 2018 , 1,	5.4	26
217	Low-loss terahertz superconducting plasmonics. New Journal of Physics, 2012, 14, 115006	2.9	26
216	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. <i>EPJ Applied Physics</i> , 2011 , 54, 33512	1.1	26
215	Electron emission induced by resonant coherent ion-surface interaction at grazing incidence. <i>Physical Review Letters</i> , 1992 , 69, 2364-2367	7.4	26
214	Efficient orbital angular momentum transfer between plasmons and free electrons. <i>Physical Review B</i> , 2018 , 98,	3.3	25
213	Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. <i>Physical Review B</i> , 2015 , 91,	3.3	25
212	Diacritical study of light, electrons and sound scattering by particles and holes. <i>New Journal of Physics</i> , 2009 , 11, 093013	2.9	25

(2003-2007)

211	Size effects in angle-resolved photoelectron spectroscopy of free rare-gas clusters. <i>Physical Review A</i> , 2007 , 75,	2.6	25	
210	Fast optical modulation of the fluorescence from a single nitrogenMacancy centre. <i>Nature Physics</i> , 2013 , 9, 785-789	16.2	24	
209	Confined collective excitations of self-standing and supported planar periodic particle arrays. <i>Optics Express</i> , 2009 , 17, 18826-35	3.3	24	
208	Photoelectron diffraction study of the Si-rich 3CBiC(001)(BZ) structure. <i>Physical Review B</i> , 2004 , 70,	3.3	24	
207	Engineering surface waves in flat phononic plates. <i>Physical Review B</i> , 2012 , 85,	3.3	23	
206	Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. <i>Wave Motion</i> , 2011 , 48, 235-242	1.8	23	
205	Single-photon generation by electron beams. <i>Nano Letters</i> , 2011 , 11, 5099-103	11.5	23	
204	Lateral engineering of surface states - towards surface-state nanoelectronics. <i>Nanoscale</i> , 2010 , 2, 717-7	217.7	23	
203	Interacting plasmon and phonon polaritons in aligned nano- and microwires. <i>Optics Express</i> , 2012 , 20, 10879-87	3.3	23	
202	Spontaneous emission enhancement near nanoparticles. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 37-42	2.1	23	
201	Quantum effects in the acoustic plasmons of atomically thin heterostructures. Optica, 2019, 6, 630	8.6	23	
200	Plasmonic energy transfer in periodically doped graphene. <i>New Journal of Physics</i> , 2013 , 15, 033042	2.9	22	
199	Coupling of gap plasmons in multi-wire waveguides. <i>Optics Express</i> , 2009 , 17, 19401-13	3.3	22	
198	Anisotropy and particle-size effects in nanostructured plasmonic metamaterials. <i>Optics Express</i> , 2009 , 17, 22012-22	3.3	22	
197	Electron emission in slow collisions of protons with a LiF-surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 67-70	1.2	22	
196	Momentum transfer to small particles by passing electron beams. <i>Physical Review B</i> , 2004 , 70,	3.3	22	
195	Electromagnetic forces and torques in nanoparticles irradiated by plane waves. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 3-9	2.1	22	
194	Electron energy loss and induced photon emission in photonic crystals. <i>Physical Review B</i> , 2003 , 67,	3.3	22	

193	Contribution of charge-transfer processes to ion-induced electron emission. <i>Physical Review B</i> , 1996 , 54, 17158-17165	3.3	22
192	Optical Excitations with Electron Beams: Challenges and Opportunities ACS Photonics, 2021, 8, 945-97	46.3	22
191	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. <i>Ultramicroscopy</i> , 2019 , 203, 44-51	3.1	22
190	Imaging the Renner-Teller effect using laser-induced electron diffraction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8173-8177	11.5	21
189	Imaging optical near fields at metallic nanoscale voids. <i>Physical Review B</i> , 2008 , 78,	3.3	21
188	Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. <i>Physical Review B</i> , 2008 , 77,	3.3	21
187	Electrically driven photon emission from individual atomic defects in monolayer WS. <i>Science Advances</i> , 2020 , 6,	14.3	21
186	Temporal quantum control with graphene. New Journal of Physics, 2012, 14, 123020	2.9	20
185	Strong terahertz absorption bands in a scaled plasmonic crystal. <i>Applied Physics Letters</i> , 2007 , 90, 2519	19.4	20
184	Resonant-coherent excitation of channeled ions. <i>Physical Review Letters</i> , 1996 , 76, 1856-1859	7.4	20
183	Ultimate Limit of Light Extinction by Nanophotonic Structures. <i>Nano Letters</i> , 2015 , 15, 7633-8	11.5	19
182	Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240	6.3	19
181	Room Temperature Graphene Mid-Infrared Bolometer with a Broad Operational Wavelength Range. <i>ACS Photonics</i> , 2020 , 7, 1206-1215	6.3	19
180	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. <i>Nano Letters</i> , 2020 , 20, 2973	-2979	19
179	Electron energy loss in carbon nanostructures. <i>Physical Review B</i> , 2003 , 67,	3.3	19
178	Circular dichroism in core photoelectron emission from (1¶) oxygen on W(110): experiment and multiple-scattering theory. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2000 , 106, 7-28	1.7	19
177	Wake-potential formation in a thin foil. <i>Physical Review B</i> , 1992 , 45, 8771-8774	3.3	19
176	Ion-induced electron emission in grazing ion-surface collisions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 79, 15-20	1.2	19

(2012-2020)

175	Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. <i>ACS Nano</i> , 2020 ,	16.7	19
174	Hybrid plasmonic nanoresonators as efficient solar heat shields. <i>Nano Energy</i> , 2017 , 37, 118-125	17.1	18
173	Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 033116	2.5	18
172	Contribution of the excitation of conduction band electrons to the kinetic electron emission induced by slow ions in metals. <i>Physical Review B</i> , 1998 , 58, 15838-15846	3.3	18
171	Self-organization of frozen light in near-zero-index media with cubic nonlinearity. <i>Scientific Reports</i> , 2016 , 6, 20088	4.9	18
170	Manipulating chemistry through nanoparticle morphology. <i>Nanoscale Horizons</i> , 2019 , 5, 102-108	10.8	18
169	Plasmon wave function of graphene nanoribbons. New Journal of Physics, 2015, 17, 083013	2.9	17
168	Analytical description of the nonlinear plasmonic response in nanographene. <i>Physical Review B</i> , 2017 , 96,	3.3	17
167	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 1134-1140	3.1	17
166	Tuneable electron-beam-driven nanoscale light source. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 024012	1.7	17
165	Total light absorption in plasmonic nanostructures. <i>Journal of Optics</i> , 2007 , 9, S458-S462		17
164	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. <i>Optics Express</i> , 2006 , 14, 11964-71	3.3	17
163	Adaptive ultrafast nano-optics in a tight focus. Applied Physics B: Lasers and Optics, 2006, 84, 89-95	1.9	17
162	Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals. <i>Physical Review B</i> , 2003 , 68,	3.3	17
161	Fundamental Limits to the Coupling between Light and 2D Polaritons by Small Scatterers. <i>ACS Nano</i> , 2019 , 13, 5184-5197	16.7	16
160	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. <i>Physical Review Applied</i> , 2019 , 11,	4.3	16
159	Plasmons in inhomogeneously doped neutral and charged graphene nanodisks. <i>Applied Physics Letters</i> , 2014 , 104, 131103	3.4	16
158	Negative refraction and backward waves in layered acoustic metamaterials. <i>Physical Review B</i> , 2012 , 86,	3.3	16

157	Ultraviolet optical near-fields of microspheres imprinted in phase change films. <i>Applied Physics Letters</i> , 2010 , 96, 193108	3.4	16
156	Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. <i>Applied Physics Letters</i> , 2010 , 97, 164103	3.4	16
155	Multiple scattering theory for non-spherical potentials: application to photoelectron angular distributions from oriented diatomic molecules and the study of shape resonances. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 99-105	1.7	16
154	Can Copper Nanostructures Sustain High-Quality Plasmons?. <i>Nano Letters</i> , 2021 , 21, 2444-2452	11.5	16
153	Optical coherence transfer mediated by free electrons. Science Advances, 2021, 7,	14.3	16
152	Nonlinear Atom-Plasmon Interactions Enabled by Nanostructured Graphene. <i>Physical Review Letters</i> , 2018 , 121, 257403	7.4	16
151	Single-Plasmon Thermo-Optical Switching in Graphene. <i>Nano Letters</i> , 2019 , 19, 3743-3750	11.5	15
150	Smith-Purcell radiation emission in aperiodic arrays. <i>Physical Review B</i> , 2016 , 94,	3.3	15
149	Photothermal Engineering of Graphene Plasmons. <i>Physical Review Letters</i> , 2018 , 121, 057404	7.4	15
148	Photonic binding in silicon-colloid microcavities. <i>Physical Review Letters</i> , 2009 , 103, 103902	7.4	15
147	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46	3.2	15
146	Dependence of the stopping power on the surface response function. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 106-109	1.2	15
145	Thermal manipulation of plasmons in atomically thin films. Light: Science and Applications, 2020, 9, 87	16.7	14
144	Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution. <i>ACS Nano</i> , 2018 , 12, 8436-8446	16.7	14
143	Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. <i>MRS Bulletin</i> , 2018 , 43, 497-503	3.2	14
142	Theory of random nanoparticle layers in photovoltaic devices applied to self-aggregated metal samples. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 294-299	6.4	14
141	Quantum junction plasmons in graphene dimers. <i>Laser and Photonics Reviews</i> , 2013 , 7, 297-302	8.3	14
140	Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. <i>Physical Review B</i> , 2010 , 82,	3.3	14

139	Lifshitz transition across the Ag/Cu(111) superlattice band gap tuned by interface doping. <i>Physical Review Letters</i> , 2011 , 107, 066803	7.4	14
138	Looking through the mirror: optical microcavity-mirror image photonic interaction. <i>Optics Express</i> , 2012 , 20, 11247-55	3.3	14
137	Multi-atom resonant photoemission. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 1179-1189	1.7	14
136	The role of surface plasmons in ion-induced kinetic electron emission. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 98, 445-449	1.2	14
135	Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields. <i>Light: Science and Applications</i> , 2021 , 10, 82	16.7	14
134	Electrical Detection of Single Graphene Plasmons. ACS Nano, 2016, 10, 8045-53	16.7	13
133	Graphene optical-to-thermal converter. <i>Applied Physics Letters</i> , 2014 , 105, 211102	3.4	13
132	Optical generation of intense ultrashort magnetic pulses at the nanoscale. <i>New Journal of Physics</i> , 2013 , 15, 113035	2.9	13
131	Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 501-9	3	13
130	Quantitative imaging of the optical near field. <i>Optics Express</i> , 2012 , 20, 22063-78	3.3	13
129	Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: multiple scattering theory in non-spherical potentials. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2002 , 35, L359-L365	1.3	13
128	Auger intra-atomic transitions in grazing atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 14589-145	5983	13
127	Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. <i>Physical Review Research</i> , 2020 , 2,	3.9	13
126	Free-electron shaping using quantum light. <i>Optica</i> , 2020 , 7, 1820	8.6	13
125	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. <i>Nano Letters</i> , 2020 , 20, 592-598	11.5	13
124	Tunable free-electron X-ray radiation from van der Waals materials. <i>Nature Photonics</i> , 2020 , 14, 686-692	233.9	13
123	Lasing and Amplification from Two-Dimensional Atom Arrays. <i>Physical Review Letters</i> , 2018 , 121, 16360.	27.4	13
122	Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. <i>Physical Review B</i> , 2016 , 94,	3.3	12

121	Near-field nanoimprinting using colloidal monolayers. <i>Optics Express</i> , 2014 , 22, 8226-33	3.3	12
120	Towards Femtojoule Nanoparticle Phase-Change Memory. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 03A065	1.4	12
119	Surface effects in the energy loss of ions passing through a thin foil. <i>Physical Review A</i> , 1997 , 56, 2032-2	2046	12
118	X-ray photoelectron diffraction study of ultrathin PbTiO3 films. <i>European Physical Journal B</i> , 2006 , 49, 141-146	1.2	12
117	Electron Beam Aberration Correction Using Optical Near Fields. <i>Physical Review Letters</i> , 2020 , 125, 030	8 9 .14	12
116	Molecular Plasmon-Phonon Coupling. <i>Nano Letters</i> , 2016 , 16, 6390-6395	11.5	12
115	Transient nonlinear plasmonics in nanostructured graphene. <i>Optica</i> , 2018 , 5, 429	8.6	11
114	Excitation of confined modes on particle arrays. <i>Optics Express</i> , 2013 , 21, 5636-42	3.3	11
113	Nanoscale force manipulation in the vicinity of a metal nanostructure. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2007 , 40, S249-S258	1.3	11
112	Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O 1s emission from NiO. <i>Physical Review B</i> , 2006 , 74,	3.3	11
111	Relativistic effects in EELS of nanoporous alumina membranes. <i>Physical Review B</i> , 2003 , 68,	3.3	11
110	Resonant-Coherent Excitation of Channeled Ions. Advances in Quantum Chemistry, 2004, 65-89	1.4	11
109	Total resonant absorption of light by plasmons on the nanoporous surface of a metal. <i>Physics of the Solid State</i> , 2005 , 47, 178	0.8	11
108	Multiple atom resonant photoemission: a new technique for studying near-neighbor atomic identities and bonding. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1999 , 101-103, 647-65	52 ^{1.7}	11
107	Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets. <i>Optica</i> , 2021 , 8, 710	8.6	11
106	Near-field focusing with optical phase antennas. <i>Optics Express</i> , 2009 , 17, 17801-11	3.3	10
105	X-ray photoelectron diffraction study of Cu(111): Multiple scattering investigation. <i>Surface Science</i> , 2006 , 600, 380-385	1.8	10
104	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. <i>Microscopy and Microanalysis</i> , 2007 , 13,	0.5	10

103	Femtosecond shaping of transverse and longitudinal light polarization. <i>Optics Letters</i> , 2004 , 29, 2187-9	3	10
102	Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: Multiple-scattering approach. <i>Physical Review B</i> , 1999 , 60, 6103-6112	3.3	10
101	Modulation of Cathodoluminescence Emission by Interference with External Light. <i>ACS Nano</i> , 2021 , 15, 7290-7304	16.7	10
100	Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. <i>ACS Nano</i> , 2021 , 15, 2219-2228	16.7	10
99	Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. <i>ACS Photonics</i> , 2017 , 4, 2908-2915	6.3	9
98	Plasmonics simulations including nonlocal effects using a boundary element method approach. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1740007	1.1	9
97	Phonon excitation by electron beams in nanographenes. <i>Physical Review B</i> , 2015 , 92,	3.3	9
96	Magnetic polarization in the optical absorption of metallic nanoparticles. <i>Optics Express</i> , 2012 , 20, 2814	23532	9
95	Near-field optical phase antennas for long-range plasmon coupling. <i>Nano Letters</i> , 2008 , 8, 2479-84	11.5	9
94	Plasmon molecules in overlapping nanovoids. <i>Physical Review B</i> , 2008 , 77,	3.3	9
93	Energy loss in grazing proton-surface collisions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 90, 252-256	1.2	9
92	Giant enhancement of third-harmonic generation in graphene-metal heterostructures. <i>Nature Nanotechnology</i> , 2021 , 16, 318-324	28.7	9
91	Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. <i>Physical Review B</i> , 2016 , 94,	3.3	8
90	Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies. <i>Physical Review B</i> , 2013 , 88,	3.3	8
89	Slow plasmonic slab waveguide as a superlens for visible light. <i>Physical Review B</i> , 2010 , 82,	3.3	8
88	Nonlinear effects in the kinetic electron emission induced by slow ions in metals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 135, 487-491	1.2	8
87	Collective oscillations in optical matter. <i>Optics Express</i> , 2007 , 15, 11082-94	3.3	8
86	Development of the scattering theory of X-ray absorption and core level photoemission. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2002 , 126, 67-76	1.7	8

85	Photoelectron diffraction at the surface of amorphous carbon nitride. <i>Applied Physics Letters</i> , 2000 , 77, 3394-3396	3.4	8
84	Interface and bulk effects in the attenuation of low-energy electrons through CaF2 thin films. <i>Physical Review B</i> , 1998 , 58, 2233-2239	3.3	8
83	Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence. <i>Physical Review B</i> , 1994 , 49, 2832-2845	3.3	8
82	Ultrafast Topological Engineering in Metamaterials. <i>Physical Review Letters</i> , 2020 , 125, 037403	7.4	8
81	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020, 7, 1290-1296	6.3	8
80	Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus. <i>Physical Review B</i> , 2017 , 96,	3.3	7
79	Coherent electron emission from high-energy ions in crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 1-6	1.2	7
78	Control of spontaneous emission by complex nanostructures. <i>Optics Letters</i> , 2004 , 29, 1494-6	3	7
77	Giant light absorption by plasmons in a nanoporous metal film. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 362-366	1.6	7
76	Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems. <i>Physical Review Research</i> , 2020 , 2,	3.9	7
75	Optical Modulation of Electron Beams in Free Space. <i>Physical Review Letters</i> , 2021 , 126, 123901	7.4	7
74	Luminescence readout of nanoparticle phase state. <i>Applied Physics Letters</i> , 2008 , 92, 093112	3.4	6
73	Accurate band mapping via photoemission from thin films. <i>Physical Review B</i> , 2004 , 69,	3.3	6
72	Impact-parameter dependence of resonant-coherent excitation of channeled ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1996 , 115, 299-305	1.2	6
71	Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. <i>Small</i> , 2021 , 17, e2103404	11	6
70	Tunable planar focusing based on hyperbolic phonon polaritons in ⊞MoO <i>Advanced Materials</i> , 2022 , e2105590	24	6
69	Graphene: Free electron scattering within an inverted honeycomb lattice. <i>Physical Review B</i> , 2019 , 99,	3.3	5
68	Probing Chirality with Inelastic Electron-Light Scattering. <i>Nano Letters</i> , 2020 , 20, 4377-4383	11.5	5

67	Enhancement of Nonlinear Optical Phenomena by Localized Resonances. ACS Photonics, 2018, 5, 1521-1	5 2 ₃ 7	5
66	Optical emission from the interaction of fast electrons with metallic films containing a circular aperture: a study of radiative decoherence of fast electrons. <i>Physical Review Letters</i> , 2009 , 102, 237401	7.4	5
65	Stimulated light emission and inelastic scattering by a classical linear system of rotating particles. <i>Physical Review Letters</i> , 2011 , 106, 213601	7.4	5
64	Interplay between electronic states and structure during Au faceting. <i>New Journal of Physics</i> , 2008 , 10, 113017	2.9	5
63	Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 90, 222-226	1.2	5
62	Electron diffraction by vacuum fluctuations. <i>New Journal of Physics</i> , 2020 , 22, 103057	2.9	5
61	Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams. <i>ACS Nano</i> , 2021 , 15, 9890-9899	16.7	5
60	Nonlinear Interactions between Free Electrons and Nanographenes. <i>Nano Letters</i> , 2020 , 20, 4792-4800	11.5	4
59	Magnetically activated rotational vacuum friction. <i>Physical Review A</i> , 2019 , 99,	2.6	4
58	Propagation and localization of quantum dot emission along a gap-plasmonic transmission line. <i>Optics Express</i> , 2015 , 23, 29296-320	3.3	4
57	Nonlocal Effects in the Optical Response of Metal Nanoparticles 2010,		4
56	Nonlinear corrections to the image potential of charged particles moving parallel to a metal surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 135, 97-102	1.2	4
55	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects 2006 ,		4
54	Overview of core and valence photoemission50-115		4
53	Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3912-3915		4
52	Elastic scattering of low-energy electrons by randomly oriented and aligned molecules: Influence of full non-spherical potentials. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 107-113	1.7	4
51	Localized valence spectroscopy of complex nanostructures. <i>Journal of Electron Microscopy</i> , 1999 , 48, 673-679		4
50	Wake potential and wake binding energy for protons and antiprotons. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1990 , 48, 25-28	1.2	4

49	Theory of electron energy-loss spectroscopy in atomically thin metallic films. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
48	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities <i>Nano Letters</i> , 2021 ,	11.5	4
47	Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems. <i>Physical Review B</i> , 2019 , 99,	3.3	3
46	Circular Dichroism in Rotating Particles. <i>Physical Review Letters</i> , 2019 , 123, 066803	7.4	3
45	Ion-induced electron emission from simple metals: Charge state effects. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 23-26	1.2	3
44	Coulomb explosion of H2+ in surface scattering. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 142, 473-485	1.2	3
43	Collective excitations in an infinite set of aligned spheres. Surface Science, 1998, 402-404, 418-423	1.8	3
42	Cherenkov radiation effects in EELS for nanoporous alumina membranes. <i>Surface Science</i> , 2003 , 532-535, 461-467	1.8	3
41	MULTIPLE SCATTERING THEORY OF PHOTOELECTRON ANGULAR DISTRIBUTIONS FROM ORIENTED DIATOMIC MOLECULES. <i>Surface Review and Letters</i> , 2002 , 09, 1213-1217	1.1	3
40	Quantum effects in the acoustic plasmons of atomically thin heterostructures: publisher note. <i>Optica</i> , 2019 , 6, 798	8.6	3
39	Rotational Doppler cooling and heating. Science Advances, 2021, 7,	14.3	3
38	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. <i>ACS Photonics</i> , 2021 , 8, 2320-2328	6.3	3
37	Enhanced graphene nonlinear response through geometrical plasmon focusing. <i>Applied Physics Letters</i> , 2018 , 112, 061107	3.4	2
36	Nonperturbative theory of graphene saturable absorption 2017 ,		2
35	Reduced radiation losses in electron beam excited propagating plasmons. <i>Optics Express</i> , 2011 , 19, 187	133320	2
34	Power transfer between neighboring planar waveguides. <i>Optics Express</i> , 2012 , 20, 3152-7	3.3	2
33	Plasmonics in buried structures. <i>Optics Express</i> , 2009 , 17, 18866-77	3.3	2
32	Plasmon excitations at diffuse interfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 304205	1.8	2

31	Modulation of cathodoluminescence emission by interference with external light 2021,		2
30	Electron refraction at lateral atomic interfaces. Journal of Applied Physics, 2017, 122, 195306	2.5	2
29	Simple Mathematics on Covid-19 Expansion		2
28	Anisotropic second-harmonic generation from monocrystalline gold flakes. <i>Optics Letters</i> , 2021 , 46, 833	3- <u>8</u> 36	2
27	Comment on "Free-Electron-Bound-Electron Resonant Interaction". <i>Physical Review Letters</i> , 2021 , 126, 019501	7.4	2
26	Active control of micrometer plasmon propagation in suspended graphene <i>Nature Communications</i> , 2022 , 13, 1465	17.4	2
25	Mapping Surface Plasmons on a Single Metallic Nanoparticle 2008,		1
24	Resonant coherent excitation to the continuum in grazing ion-surface collisions. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, A267-A268	1.8	1
23	Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures. <i>Physical Review Letters</i> , 2021 , 127, 157404	7.4	1
22	Nonlinear plasmonic response in atomically thin metal films. <i>Nanophotonics</i> , 2021 ,	6.3	1
21	Chemical identification through two-dimensional electron energy-loss spectroscopy. <i>Science Advances</i> , 2020 , 6, eabb4713	14.3	1
20	Complete coupling of focused light to surface polaritons. <i>Optica</i> , 2021 , 8, 520	8.6	1
19	Atomically-Precise Texturing of Hexagonal Boron Nitride Nanostripes. <i>Advanced Science</i> , 2021 , 8, e210 ²	14556	1
18	Visible Optical Resonances in Electrically Doped DNA. ACS Photonics, 2019, 6, 932-938	6.3	1
17	Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics. <i>ACS Photonics</i> , 2021 , 8, 614-624	6.3	1
16	Generation, characterization, and manipulation of quantum correlations in electron beams. <i>Npj Quantum Information</i> , 2021 , 7,	8.6	1
15	Low-Loss Tunable Infrared Plasmons in the High-Mobility Perovskite (Ba,La)SnO Small, 2022, e210689	711	1
14	Probing Electronic States in Monolayer Semiconductors through Static and Transient Third-Harmonic Spectroscopies. <i>Advanced Materials</i> , 2021 , e2107104	24	O

13	Anomalous Thermodiffusion of Electrons in Graphene. <i>Physical Review Letters</i> , 2020 , 125, 176802	7.4	O
12	Exploring electronic coupling of optical and phonon excitations at the nanoscale. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1202-1203	0.5	О
11	2-Grating Inelastic Free Electron Interferometry. <i>Microscopy and Microanalysis</i> , 2021 , 27, 1474-1477	0.5	O
10	Inelastic Mach-Zehnder Interferometry with Free Electrons <i>Physical Review Letters</i> , 2022 , 128, 147401	7.4	О
9	Electron Beam Aberration Correction Using Optical Fields. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2974	-29574	
8	Ultrasound Transmission Through Periodically Perforated Plates. <i>Springer Series in Materials Science</i> , 2013 , 83-113	0.9	
7	Photonic absorption bands in the spectra of nanoporous metallic films. <i>Physics of the Solid State</i> , 2007 , 49, 1264-1267	0.8	
6	Adaptive Sub-Wavelength Control of Nano-Optical Fields 2007 , LWD2		
5	Combining electronic and optical spectroscopy at the nanometer scale in a STEM 2008 , 351-352		
4	Probing bright and dark surface plasmon modes in individual and coupled Au nanoparticles using a fast electron beam 2008 , 361-362		
3	Adaptive Control of Nanoscopic Photoelectron Emission. Springer Series in Chemical Physics, 2007, 633-	6353	
2	Quantum Aspects of Electron-Light-Plasmon Interactions at the Atomic Scale. <i>Microscopy and Microanalysis</i> , 2020 , 26, 3026-3026	0.5	
1	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. <i>Microscopy and Microanalysis</i> , 2021 , 27, 320-321	0.5	