Colin Farquharson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4775143/publications.pdf

Version: 2024-02-01

185 papers

6,930 citations

50170 46 h-index 72 g-index

193 all docs

193 docs citations

times ranked

193

7606 citing authors

#	Article	IF	CITATIONS
1	Perspective on Dentoalveolar Manifestations Resulting From PHOSPHO1 Loss-of-Function: A Form of Pseudohypophosphatasia?. Frontiers in Dental Medicine, 2022, 3, .	0.5	3
2	miR-29b inhibits TGF- \hat{l}^21 -induced cell proliferation in articular chondrocytes. Biochemistry and Biophysics Reports, 2022, 29, 101216.	0.7	O
3	The role of accelerated growth plate fusion in the absence of SOCS2 on osteoarthritis vulnerability. Bone and Joint Research, 2022, 11, 162-170.	1.3	4
4	Combined growth hormone and insulin-like growth factor-1 rescues growth retardation in glucocorticoid-treated mdxmice but does not prevent osteopenia. Journal of Endocrinology, 2022, 253, 63-74.	1.2	5
5	Tenascin-C is a driver of inflammation in the DSS model of colitis. Matrix Biology Plus, 2022, 14, 100112.	1.9	1
6	Ablation of <i>Enpp6</i> Results in Transient Bone Hypomineralization. JBMR Plus, 2021, 5, e10439.	1.3	4
7	Osteoblastâ€specific deficiency of ectonucleotide pyrophosphatase or phosphodiesteraseâ€1 engenders insulin resistance in highâ€fat diet fed mice. Journal of Cellular Physiology, 2021, 236, 4614-4624.	2.0	16
8	The role of miRâ€29 family in disease. Journal of Cellular Biochemistry, 2021, 122, 696-715.	1.2	46
9	Proton Pump Inhibitors Inhibit PHOSPHO1 Activity and Matrix Mineralisation In Vitro. Calcified Tissue International, 2021, 109, 696-705.	1.5	5
10	A Systems-Level Analysis of Total-Body PET Data Reveals Complex Skeletal Metabolism Networks in vivo. Frontiers in Medicine, 2021, 8, 740615.	1.2	8
11	Endocrinology of Bone and Growth Disorders. , 2021, , .		1
12	A comparison of the bone and growth phenotype of <i>mdx</i> , <i>mdx:cmah</i> $^{\circ}$ /â $^{\circ}$ and <i>mdx:utrn</i> +/â $^{\circ}$ murine models with the C57BL10 wildtype mouse. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	7
13	PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biology, 2020, 18, 149.	1.7	13
14	Transcriptomic profiling of feline teeth highlights the role of matrix metalloproteinase 9 (MMP9) in tooth resorption. Scientific Reports, 2020, 10, 18958.	1.6	8
15	Conditional deletion of E $11/P$ odoplanin in bone protects against ovariectomy-induced increases in osteoclast formation and activity. Bioscience Reports, 2020, 40, .	1.1	6
16	Beyond mineralisation: metabolic functions for matrix mineralisation regulators. Journal of Endocrinology, 2020, 245, R11-R22.	1.2	2
17	Glucocorticoid metabolism and the action of 11 beta-hydroxysteroid dehydrogenase 2 in canine congestive heart failure. Veterinary Journal, 2020, 258, 105456.	0.6	0
18	Conditional deletion of E11/podoplanin in bone protects against load-induced osteoarthritis. BMC Musculoskeletal Disorders, 2019, 20, 344.	0.8	13

#	Article	IF	Citations
19	How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus, 2019, 3, e10202.	1.3	44
20	Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Archives of Biochemistry and Biophysics, 2019, 667, 14-21.	1.4	25
21	The Ex Vivo Organ Culture of Bone. Methods in Molecular Biology, 2019, 1914, 199-215.	0.4	6
22	ENPP1 in the Regulation of Mineralization and Beyond. Trends in Biochemical Sciences, 2019, 44, 616-628.	3.7	67
23	Azathioprine Has a Deleterious Effect on the Bone Health of Mice with DSS-Induced Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2019, 20, 6085.	1.8	13
24	Optimised isolation method for RNA extraction suitable for RNA sequencing from feline teeth collected in a clinical setting and at post mortem. Veterinary Research Communications, 2019, 43, 17-27.	0.6	4
25	Suppressor of cytokine signaling 2 (SOCS2) deletion protects bone health of mice with DSS induced inflammatory bowel disease. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	15
26	Exploiting novel valve interstitial cell lines to study calcific aortic valve disease. Molecular Medicine Reports, 2018, 17, 2100-2106.	1.1	13
27	3D forward modeling and inversion of electromagnetics and applications — Introduction. Geophysics, 2018, 83, WBi-WBi.	1.4	0
28	Enhanced phosphocholine metabolism is essential for terminal erythropoiesis. Blood, 2018, 131, 2955-2966.	0.6	42
29	Animal models to explore the effects of glucocorticoids on skeletal growth and structure. Journal of Endocrinology, 2018, 236, R69-R91.	1.2	38
30	PLA ₂ and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization. FASEB Journal, 2018, 32, 20-25.	0.2	26
31	FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression. Journal of Cellular Physiology, 2018, 233, 5334-5347.	2.0	23
32	Hypomorphic conditional deletion of E11/podoplanin in the subchondral bone protects against load-induced osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, S61.	0.6	1
33	PHOSPHO1 is essential for normal bone fracture healing. Bone and Joint Research, 2018, 7, 397-405.	1.3	12
34	Skeletal energy homeostasis: a paradigm of endocrine discovery. Journal of Endocrinology, 2017, 234, R67-R79.	1.2	37
35	Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation. Journal of Cellular Physiology, 2017, 232, 3006-3019.	2.0	28
36	End stage renal diseaseâ€induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derivedâ€matrix vesicles. Journal of Cellular Physiology, 2017, 232, 2985-2995.	2.0	64

#	Article	IF	CITATIONS
37	A distinctive patchy osteomalacia characterises <i>Phospho1</i> â€deficient mice. Journal of Anatomy, 2017, 231, 298-308.	0.9	21
38	FGF-2 Promotes osteocyte differentiation in vitro through increased e11/podoplanin expression. Osteoarthritis and Cartilage, 2017, 25, S141-S142.	0.6	0
39	16â€Investigating calcific aortic valve disease using novel immortalised sheep and rat valve interstitial cell lines. , 2017, , .		0
40	Isolation and Characterization of Primary Rat Valve Interstitial Cells: A New Model to Study Aortic Valve Calcification. Journal of Visualized Experiments, 2017, , .	0.2	6
41	Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation. Frontiers in Physiology, 2017, 8, 805.	1.3	12
42	Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues. International Journal of Molecular Sciences, 2017, 18, 29.	1.8	6
43	Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone, 2016, 87, 147-158.	1.4	133
44	The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures. Calcified Tissue International, 2016, 99, 510-524.	1.5	14
45	Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model. Arthritis and Rheumatology, 2016, 68, 880-891.	2.9	37
46	E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. Journal of Cellular Physiology, 2016, 231, 1392-1404.	2.0	22
47	Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification. Journal of Visualized Experiments, 2016, , .	0.2	13
48	Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in ⟨i⟩Phospho1⟨i⟩–/– and ⟨i⟩Phospho1/Pit1⟨i⟩ Double-Knockout Mice. Journal of Bone and Mineral Research, 2016, 31, 1275-1286.	3.1	53
49	Role of PHOSPHO1 in Periodontal Development and Function. Journal of Dental Research, 2016, 95, 742-751.	2.5	22
50	Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocrine Reviews, 2016, 37, 62-110.	8.9	104
51	Expression of Sulf1 and Sulf2 in cartilage, bone and endochondral fracture healing. Histochemistry and Cell Biology, 2016, 145, 67-79.	0.8	24
52	Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. Journal of Cellular Physiology, 2015, 230, 2796-2806.	2.0	20
53	<scp>BMP</scp> â€9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an <scp>ALK</scp> 1 mediated pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 165-174.	1.6	56
54	MMP and TIMP temporal gene expression during osteocytogenesis. Gene Expression Patterns, 2015, 18, 29-36.	0.3	21

#	Article	IF	Citations
55	The functional co-operativity of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 during initiation of skeletal mineralization Biochemistry and Biophysics Reports, 2015, 4, 196-201.	0.7	26
56	Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. Bone, 2015, 81, 277-291.	1.4	36
57	E11 protein stabilisation by proteasome inhibition promotes osteocyte differentiation and may protect against osteoarthritis bone pathology. Osteoarthritis and Cartilage, 2015, 23, A57.	0.6	1
58	Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. Journal of Endocrinology, 2015, 225, R1-R19.	1.2	95
59	Piroxicam Treatment Augments Bone Abnormalities in Interleukin-10 Knockout Mice. Inflammatory Bowel Diseases, 2015, 21, 257-266.	0.9	13
60	An Investigation of the Mineral in Ductile and Brittle Cortical Mouse Bone. Journal of Bone and Mineral Research, 2015, 30, 786-795.	3.1	47
61	Upregulation of IGF2 expression during vascular calcification. Journal of Molecular Endocrinology, 2014, 52, 77-85.	1.1	16
62	Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2â^'/â^' mice. Journal of Endocrinology, 2014, 223, 93-106.	1.2	14
63	Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. Journal of Bone and Mineral Metabolism, 2014, 32, 240-251.	1.3	42
64	Design, synthesis and evaluation of benzoisothiazolones as selective inhibitors of PHOSPHO1. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4308-4311.	1.0	22
65	Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone, 2014, 69, 174-179.	1.4	34
66	Ablation of Osteopontin Improves the Skeletal Phenotype of <i>Phospho1 â^'/â^'</i> Mice. Journal of Bone and Mineral Research, 2014, 29, 2369-2381.	3.1	42
67	Deficiency of the bone mineralization inhibitor NPP1 protects against obesity and diabetes. DMM Disease Models and Mechanisms, 2014, 7, 1341-50.	1.2	21
68	Evaluating invasive and non-invasive methods to determine fat content in the laboratory mouse. Open Life Sciences, $2014, 10, .$	0.6	2
69	A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. Journal of Visualized Experiments, 2014, , e52099.	0.2	31
70	Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification. Journal of Bone and Mineral Research, 2013, 28, 81-91.	3.1	52
71	Suppression of mammalian bone growth by membrane transport inhibitors. Journal of Cellular Biochemistry, 2013, 114, 658-668.	1.2	7
72	The sclerostin and MEPE axis in the development of osteoarthritis. Osteoarthritis and Cartilage, 2013, 21, S55.	0.6	2

#	Article	IF	CITATIONS
73	A protective role for FGF-23 in local defence against disrupted arterial wall integrity?. Molecular and Cellular Endocrinology, 2013, 372, 1-11.	1.6	59
74	Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling. Pediatric Nephrology, 2013, 28, 547-556.	0.9	32
75	Cartilage to bone transitions in health and disease. Journal of Endocrinology, 2013, 219, R1-R12.	1.2	67
76	Compounded PHOSPHO1/ALPL Deficiencies Reduce Dentin Mineralization. Journal of Dental Research, 2013, 92, 721-727.	2.5	49
77	Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS ONE, 2013, 8, e72457.	1.1	300
78	Pathophysiology and Management of Abnormal Growth in Children with Chronic Inflammatory Bowel Disease. World Review of Nutrition and Dietetics, 2013, 106, 142-148.	0.1	9
79	Mechanisms and Clinical Consequences of Vascular Calcification. Frontiers in Endocrinology, 2012, 3, 95.	1.5	98
80	The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. Journal of Endocrinology, 2012, 214, 241-255.	1.2	181
81	Chondrogenic ATDC5 cells: An optimised model for rapid and physiological matrix mineralisation. International Journal of Molecular Medicine, 2012, 30, 1187-1193.	1.8	63
82	Regulation of endochondral ossification by the MEPE–ASARM axis. Bone, 2012, 50, S97.	1.4	0
83	MEPE is a novel regulator of growth plate cartilage mineralization. Bone, 2012, 51, 418-430.	1.4	42
84	Altered Bone Development and an Increase in FGF-23 Expression in Enpp1â^'/â^' Mice. PLoS ONE, 2012, 7, e32177.	1.1	115
85	Extracellular Matrix Mineralization Promotes E $11/gp38$ Glycoprotein Expression and Drives Osteocytic Differentiation. PLoS ONE, 2012, 7, e36786.	1.1	54
86	SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis. Journal of Bone and Mineral Research, 2012, 27, 1055-1066.	3.1	29
87	Cartilage development and degeneration: a Wnt Wnt situation. Cell Biochemistry and Function, 2012, 30, 633-642.	1.4	35
88	Localisation and expression of TRPV6 in all intestinal segments and kidney of laying hens. British Poultry Science, 2011, 52, 507-516.	0.8	17
89	PHOSPHO1 is essential for mechanically competent mineralization and the avoidance of spontaneous fractures. Bone, 2011, 48, 1066-1074.	1.4	71
90	Sodium fluoride induces apoptosis and alters bcl-2 family protein expression in MC3T3-E1 osteoblastic cells. Biochemical and Biophysical Research Communications, 2011, 410, 910-915.	1.0	47

#	Article	IF	Citations
91	The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells. PLoS ONE, 2011, 6, e19595.	1.1	237
92	Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: A unified model of the mechanisms of initiation of skeletal calcification. Journal of Bone and Mineral Research, 2011, 26, 286-297.	3.1	199
93	The skeleton: no bones about it. Journal of Endocrinology, 2011, 211, 107-108.	1.2	5
94	Social networking between cells of the foetal skeleton: the importance of thyroid hormones. Journal of Endocrinology, 2011, 210, 135-136.	1.2	1
95	Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. Journal of Bone and Mineral Research, 2010, 25, 716-723.	3.1	118
96	The effect of GH and IGF1 on linear growth and skeletal development and their modulation by SOCS proteins. Journal of Endocrinology, 2010, 206, 249-259.	1.2	114
97	Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick. Bone, 2010, 46, 1146-1155.	1.4	57
98	Loss of bone mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function. Bone, 2010, 46, S78.	1.4	1
99	SOCS2 Regulates Growth by Inhibiting GH Signalling in Chondrocytes. Bone, 2010, 46, S78-S79.	1.4	0
100	A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology., 2010, 19, 214-227.		32
101	Inflammatory cytokines and the GH/IGFâ€I axis: novel actions on bone growth. Cell Biochemistry and Function, 2009, 27, 119-127.	1.4	68
102	Increased bone mass, altered trabecular architecture and modified growth plate organization in the growing skeleton of SOCS2 deficient mice. Journal of Cellular Physiology, 2009, 218, 276-284.	2.0	39
103	Chondrocyte p21WAF1/CIP1 Expression Is Increased by Dexamethasone but Does Not Contribute to Dexamethasone-Induced Growth Retardation In Vivo. Calcified Tissue International, 2009, 85, 326-334.	1.5	18
104	Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading. Bone, 2009, 45, 357-366.	1.4	24
105	The role of sex steroids in controlling pubertal growth. Clinical Endocrinology, 2008, 68, 4-15.	1.2	103
106	Identification of a novel splice variant of the haloacid dehalogenase: PHOSPHO1. Biochemical and Biophysical Research Communications, 2008, 371, 872-876.	1.0	5
107	Dexamethasone-induced expression of the glucocorticoid response gene lipocalin 2 in chondrocytes. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1023-E1034.	1.8	60
108	Phospholipase C-eta Enzymes as Putative Protein Kinase C and Ca ²⁺ Signalling Components in Neuronal and Neuroendocrine Tissues. Neuroendocrinology, 2007, 86, 243-248.	1.2	50

#	Article	IF	CITATIONS
109	IGF-I signalling in bone growth: Inhibitory actions of dexamethasone and IL- $1\hat{1}^2$. Growth Hormone and IGF Research, 2007, 17, 435-439.	0.5	38
110	The growth plate sparing effects of the selective glucocorticoid receptor modulator, AL-438. Molecular and Cellular Endocrinology, 2007, 264, 164-170.	1.6	55
111	Cytokine profiling andinÂvitrostudies of murine bone growth using biological fluids from children with juvenile idiopathic arthritis. Clinical Endocrinology, 2007, 67, 442-448.	1.2	14
112	Functional Involvement of PHOSPHO1 in Matrix Vesicle-Mediated Skeletal Mineralization. Journal of Bone and Mineral Research, 2007, 22, 617-627.	3.1	153
113	The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology, 2006, 45, 11-19.	0.9	69
114	The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone, 2006, 39, 1000-1007.	1.4	79
115	Cytokine actions in growth disorders associated with pediatric chronic inflammatory diseases (Review). International Journal of Molecular Medicine, 2006, 18, 1011-8.	1.8	61
116	Elevated expression of hypoxia inducible factor- $2\hat{l}_{\pm}$ in terminally differentiating growth plate chondrocytes. Journal of Cellular Physiology, 2006, 206, 435-440.	2.0	34
117	Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent. Journal of Endocrinology, 2006, 191, 369-377.	1.2	24
118	The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. Journal of Endocrinology, 2006, 189, 319-328.	1.2	93
119	Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 73-82.	1.1	32
120	The electrical resistivity structure of Archean to Tertiary lithosphere along 3200 km of SNORCLE profiles, northwestern Canada. Canadian Journal of Earth Sciences, 2005, 42, 1257-1275.	0.6	42
121	Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. International Journal of Molecular Medicine, 2005, 15, 117.	1.8	9
122	Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. International Journal of Molecular Medicine, 2005, 15, 117-21.	1.8	38
123	Insulin-Like Growth Factor-I Augments Chondrocyte Hypertrophy and Reverses Glucocorticoid-Mediated Growth Retardation in Fetal Mice Metatarsal Cultures. Endocrinology, 2004, 145, 2478-2486.	1.4	64
124	Bone Strength During Growth: Influence of Growth Rate on Cortical Porosity and Mineralization. Calcified Tissue International, 2004, 74, 236-245.	1.5	116
125	PHOSPHO1â€"A novel phosphatase specifically expressed at sites of mineralisation in bone and cartilage. Bone, 2004, 34, 629-637.	1.4	89
126	Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochemical Journal, 2004, 382, 59-65.	1.7	111

#	Article	lF	CITATIONS
127	Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Protein Engineering, Design and Selection, 2003, 16, 889-895.	1.0	42
128	Expression of type X collagen, Indian hedgehog and parathyroid hormone related-protein in normal and tibial dyschondroplastic chick growth plates. Avian Pathology, 2003, 32, 69-80.	0.8	25
129	Glucocorticoid effects on chondrogenesis, differentiation and apoptosis in the murine ATDC5 chondrocyte cell line. Journal of Endocrinology, 2002, 175, 705-713.	1.2	67
130	Chromosomal localization of the chicken and mammalian orthologues of the orphan phosphatase PHOSPHO1 gene. Animal Genetics, 2002, 33, 451-454.	0.6	12
131	Effects of choice of reverse-transcriptase enzyme and use of T4 gene 32 protein on banding patterns in agarose gel differential display. Analytical Biochemistry, 2002, 308, 192-194.	1.1	7
132	Differences in metabolic parameters and gene expression related to Osteochondrosis/Osteoarthrosis in pigs fed 25-hydroxyvitamin D3. Veterinary Research, 2002, 33, 383-396.	1.1	23
133	Parathyroid hormone-related peptide expression in tibial dyschondroplasia. Avian Pathology, 2001, 30, 327-335.	0.8	6
134	Regulation of Chondrocyte Terminal Differentiation in the Postembryonic Growth Plate: The Role of the PTHrP-Indian Hedgehog Axis. Endocrinology, 2001, 142, 4131-4140.	1.4	29
135	Extracellular fatty acid binding protein (Ex-FABP) modulation by inflammatory agents: "physiological― acute phase response in endochondral bone formation. European Journal of Cell Biology, 2000, 79, 155-164.	1.6	35
136	Skeletal development in the meat-type chicken. British Poultry Science, 2000, 41, 141-149.	0.8	134
137	Chondrocytes and Longitudinal Bone Growth: The Development of Tibial Dyschondroplasia. Poultry Science, 2000, 79, 994-1004.	1.5	94
138	Identification of a Family of Noncanonical Ubiquitin-Conjugating Enzymes Structurally Related to Yeast UBC6. Biochemical and Biophysical Research Communications, 2000, 269, 474-480.	1.0	27
139	Dietary effects on bone quality and turnover, and Ca and P metabolism in chickens. Research in Veterinary Science, 2000, 69, 81-87.	0.9	45
140	Expression patterns of chondrocyte genes cloned by differential display in tibial dyschondroplasia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1501, 180-188.	1.8	27
141	Dietary Ca and P requirements and skeletal quality in broiler chickens. British Poultry Science, 1999, 40, 57-58.	0.8	2
142	A novel integral membrane protein is differentially expressed in the chick growth plate and maps to chromosome 1. Animal Genetics, 1999, 30, 300-303.	0.6	2
143	Microtubules are potential regulators of growth-plate chondrocyte differentiation and hypertrophy. Bone, 1999, 25, 405-412.	1.4	46
144	Identification and cloning of a novel phosphatase expressed at high levels in differentiating growth plate chondrocytes1The nucleotide sequence has been deposited in the EMBL database under accession number AJ006529.1. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1448, 500-506.	1.9	61

#	Article	IF	CITATIONS
145	Ascorbic acid-induced chondrocyte terminal differentiation: the role of the extracellular matrix and 1,25-dihydroxyvitamin D. European Journal of Cell Biology, 1998, 76, 110-118.	1.6	44
146	Cloning differentially regulated genes from chondrocytes using agarose gel differential display. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1396, 237-241.	2.4	16
147	Determining broiler bone life history. British Poultry Science, 1998, 39, 59-60.	0.8	2
148	Deer Antler Does Not Represent a Typical Endochondral Growth System: Immunoidentification of Collagen Type X but Little Collagen Type II in Growing Antler Tissue. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 303-308.	0.7	27
149	Further Observations on Programmed Cell Death in the Epiphyseal Growth Plate: Comparison of Normal and Dyschondroplastic Epiphyses. Journal of Bone and Mineral Research, 1997, 12, 1647-1656.	3.1	42
150	Growth plate chondrocyte vitamin D receptor number and affinity are reduced in avian tibial dyschondroplastic lesions. Bone, 1996, 19, 197-203.	1.4	32
151	Deep electrical conductivity structures of the Appalachian Orogen in the southeastern U.S Geophysical Research Letters, 1996, 23, 1597-1600.	1.5	25
152	Distribution and quantification of pyridinium cross-links of collagen within the different maturational zones of the chick growth plate. Biochimica Et Biophysica Acta - General Subjects, 1996, 1290, 250-256.	1.1	6
153	Evidence of ultracytochemical mitochondria-derived hydrogen peroxide activity in myocardial cells from broiler chickens with an ascites syndrome. Research in Veterinary Science, 1996, 61, 7-12.	0.9	20
154	In vivo and in vitro effect of 1,25-dihydroxyvitamin D3 and 1,25-dihydroxy-16-ene-23-yne-vitamin D3 on the proliferation and differentiation of avian chondrocytes: their role in tibial dyschondroplasia. Journal of Endocrinology, 1996, 148, 465-474.	1.2	15
155	The expression of transforming growth factor- \hat{l}^2 by cultured chick growth plate chondrocytes: differential regulation by 1,25-dihydroxyvitamin D3. Journal of Endocrinology, 1996, 149, 277-285.	1.2	17
156	Differentiation and mineralization in chick chondrocytes maintained in a high cell density culture: A model for endochondral ossification. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 288-294.	0.7	25
157	Interaction between dietary 1,25â€dihydroxycholecalciferol and calcium and effects of management on the occurrence of tibial dyschondroplasia, leg abnormalities and performance in broiler chickens. British Poultry Science, 1995, 36, 465-477.	0.8	25
158	Growth hormone and longitudinal bone growth in vivo: short-term effect of a growth hormone antiserum. Journal of Endocrinology, 1995, 146, 55-62.	1.2	7
159	Regulators of chondrocyte differentiation in tibial dyschondroplasia: An in vivo and in vitro study. Bone, 1995, 17, 279-286.	1.4	41
160	Growth plate vitamin D receptors in tibial dyschondroplasia. Bone, 1995, 16, 687-688.	1.4	1
161	Alterations in glycosaminoglycan concentration and sulfation during chondrocyte maturation. Calcified Tissue International, 1994, 54, 296-303.	1.5	33
162	P43. 24,25-Dihydroxyvitamin D production by normal and dyschondroplastic chondrocytes. Bone, 1994, 15, 461-462.	1.4	4

#	Article	IF	Citations
163	Visualisation and selective elimination of a subpopulation of mitogen-responsive bone marrow stromal cells using bromodeoxyuridine and photo-induced cell killing. Bone, 1993, 14, 779-786.	1.4	4
164	Avian tibial dyschondroplasia: The interaction of genetic selection and dietary 1,25 â€dihydroxycholecalciferol. Avian Pathology, 1993, 22, 311-324.	0.8	55
165	Mitogenic action of insulin-like growth factor-I on human osteosarcoma MG-63 cells and rat osteoblasts maintained in situ: the role of glucose-6-phosphate dehydrogenase. Bone and Mineral, 1993, 22, 105-115.	2.0	19
166	Studies on growth plate chondrocytes <i>in situ:</i> cell proliferation and differentiation. Acta Paediatrica, International Journal of Paediatrics, 1993, 82, 42-48.	0.7	21
167	In vivo effect of 1,25-dihydroxycholecalciferol on the proliferation and differentiation of avian chondrocytes. Journal of Bone and Mineral Research, 1993, 8, 1081-1088.	3.1	38
168	Osteochondrosis/dyschondroplasia: a failure of chondrocyte differentiation. Equine Veterinary Journal, 1993, 25, 13-18.	0.9	10
169	The control of chondrocyte differentiation during endochondral bone growth in vivo: changes in TGF- \hat{l}^2 and the proto-oncogene c- <i>myc</i> . Journal of Cell Science, 1993, 105, 949-956.	1.2	67
170	The control of chondrocyte differentiation during endochondral bone growth in vivo: changes in TGF-beta and the proto-oncogene c-myc. Journal of Cell Science, 1993, 105 (Pt 4), 949-56.	1.2	24
171	Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: An in situ biochemical study. Bone, 1992, 13, 59-67.	1.4	74
172	The proto-oncogene C-myc is involved in cell differentiation as well as cell proliferation: Studies on growth plate chondrocytes in situ. Journal of Cellular Physiology, 1992, 152, 135-144.	2.0	43
173	Immunolocalization of collagen types I, III and IV, elastin and fibronectin within the heart of normal and copper-deficient rats. Journal of Comparative Pathology, 1991, 104, 245-255.	0.1	17
174	Endogenous mediators of growth. Proceedings of the Nutrition Society, 1990, 49, 443-450.	0.4	15
175	Cell proliferation within the growth plate of long bones assessed by bromodeoxyuridine uptake and its relationship to glucose 6-phosphate dehydrogenase activity. Bone and Mineral, 1990, 10, 121-130.	2.0	35
176	The Effects of Copper Deficiency on the Pyridinium Crosslinks of Mature Collagen in the Rat Skeleton and Cardiovascular System. Experimental Biology and Medicine, 1989, 192, 166-171.	1.1	36
177	Excretion of pyridinium cross-links of collagen in ovariectomized rats as urinary markers for increased bone resorption. Calcified Tissue International, 1989, 44, 343-347.	1.5	80
178	Immunolocalization of collagen types I and III in the arterial wall of the rat. The Histochemical Journal, 1989, 21, 172-178.	0.6	25
179	The distribution of elastin in developing and adult rat organs using immunocytochemical techniques. Journal of Anatomy, 1989, 165, 225-36.	0.9	8
180	Immunohistochemical localization of native and denatured collagen types I and II in fetal and adult rat long bones. Bone, 1988, 9, 407-414.	1.4	17

#	Article	lF	CITATIONS
181	Female Rats Are Susceptible to Cardiac Hypertrophy Induced by Copper Deficiency: The Lack of Influence of Estrogen and Testosterone. Experimental Biology and Medicine, 1988, 188, 272-281.	1.1	14
182	The Effects of Reserpine upon the Cardiac Enlargement of Copper Deficiency. Experimental Biology and Medicine, 1988, 189, 173-182.	1.1	7
183	Kidney lesions in copper-deficient rats. Journal of Comparative Pathology, 1987, 97, 187-196.	0.1	15
184	Observations on the pancreas of cattle deficient in copper. Journal of Comparative Pathology, 1985, 95, 573-590.	0.1	28
185	PHOSPHO1: roles beyond skeletal mineralisation. Endocrine Abstracts, 0, , .	0.0	1