
Chenqi Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4774293/publications.pdf Version: 2024-02-01

CHENOL XIL

#	Article	IF	CITATIONS
1	Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature, 2016, 531, 651-655.	27.8	648
2	Immune checkpoint signaling and cancer immunotherapy. Cell Research, 2020, 30, 660-669.	12.0	617
3	Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nature Metabolism, 2020, 2, 132-141.	11.9	411
4	Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3É› Cytoplasmic Tyrosine-Based Motif. Cell, 2008, 135, 702-713.	28.9	391
5	Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nature Medicine, 2007, 13, 211-217.	30.7	342
6	The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly with the T Cell Receptor. Cell, 2006, 127, 355-368.	28.9	221
7	Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature, 2013, 493, 111-115.	27.8	215
8	FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature, 2018, 564, 130-135.	27.8	174
9	Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Research, 2014, 24, 959-976.	12.0	109
10	Regulation of T cell signalling by membrane lipids. Nature Reviews Immunology, 2016, 16, 690-701.	22.7	108
11	lonic protein–lipid interaction at the plasma membrane: what can the charge do?. Trends in Biochemical Sciences, 2014, 39, 130-140.	7.5	99
12	Mechano-regulation of Peptide-MHC Class I Conformations Determines TCR Antigen Recognition. Molecular Cell, 2019, 73, 1015-1027.e7.	9.7	95
13	Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy. Cell, 2020, 182, 855-871.e23.	28.9	91
14	Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity, 2020, 53, 456-470.e6.	14.3	83
15	The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nature Medicine, 2014, 20, 80-86.	30.7	77
16	lonic CD3â^'Lck interaction regulates the initiation of T-cell receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5891-E5899.	7.1	70
17	Cholesterol Metabolism in T Cells. Frontiers in Immunology, 2017, 8, 1664.	4.8	63
18	Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nature Structural and Molecular Biology, 2017, 24, 1081-1092.	8.2	46

Chenqi Xu

#	Article	IF	CITATIONS
19	Blocking interaction between SHP2 and PDâ€1 denotes a novel opportunity for developing PDâ€1 inhibitors. EMBO Molecular Medicine, 2020, 12, e11571.	6.9	40
20	Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Research, 2017, 27, 505-525.	12.0	38
21	PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nature Communications, 2021, 12, 5106.	12.8	38
22	BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi Karsch. Journal of Biological Chemistry, 2004, 279, 34562-34569.	3.4	37
23	A Membrane-proximal Tetracysteine Motif Contributes to Assembly of CD3Î'iµ and CD3Î ³ iµ Dimers with the T Cell Receptor. Journal of Biological Chemistry, 2006, 281, 36977-36984.	3.4	36
24	Acidic phospholipids govern the enhanced activation of IgG-B cell receptor. Nature Communications, 2015, 6, 8552.	12.8	35
25	Response Multilayered Control of T Cell Receptor Phosphorylation. Cell, 2010, 142, 669-671.	28.9	32
26	Structural understanding of T cell receptor triggering. Cellular and Molecular Immunology, 2020, 17, 193-202.	10.5	32
27	Antigen Receptor Nanoclusters: Small Units with Big Functions. Trends in Immunology, 2016, 37, 680-689.	6.8	30
28	An autoimmune disease variant of IgG1 modulates B cell activation and differentiation. Science, 2018, 362, 700-705.	12.6	28
29	PD-1: A Driver or Passenger of T Cell Exhaustion?. Molecular Cell, 2020, 77, 930-931.	9.7	28
30	Uhrf1 Controls iNKT Cell Survival and Differentiation through the Akt-mTOR Axis. Cell Reports, 2016, 15, 256-263.	6.4	27
31	Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism Fcî³RIIB-T232. Journal of Experimental Medicine, 2016, 213, 2707-2727.	8.5	26
32	Solution Structure of BmBKTx1, a New BKCa1Channel Blocker from the Chinese ScorpionButhus martensiKarschâ€,‡. Biochemistry, 2004, 43, 3764-3771.	2.5	20
33	Lipid in T-cell receptor transmembrane signaling. Progress in Biophysics and Molecular Biology, 2015, 118, 130-138.	2.9	18
34	A PIP ₂ -derived amplification loop fuels the sustained initiation of B cell activation. Science Immunology, 2017, 2, .	11.9	18
35	Uncovering a conserved vulnerability site in SARSâ€CoVâ€⊋ by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
36	Direct Regulation of the T Cell Antigen Receptor's Activity by Cholesterol. Frontiers in Cell and Developmental Biology, 2020, 8, 615996.	3.7	15

Chenqi Xu

#	Article	IF	CITATIONS
37	Digital response in T cells: to be or not to be. Cell Research, 2014, 24, 265-266.	12.0	14
38	Exploiting T cell signaling to optimize engineered T cell therapies. Trends in Cancer, 2022, 8, 123-134.	7.4	13
39	Structure of the scorpion toxin BmBKTtx1 solved from single wavelength anomalous scattering of sulfur. Journal of Structural Biology, 2004, 145, 289-294.	2.8	12
40	Intramembrane ionic protein–lipid interaction regulates integrin structure and function. PLoS Biology, 2018, 16, e2006525.	5.6	11
41	Polybasic RKKR motif in the linker region of lipid droplet (LD)–associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. Journal of Biological Chemistry, 2018, 293, 19330-19343.	3.4	10
42	Disruption of disulfide-restriction at integrin knees induces activation and ligand-independent signaling of α4β7. Journal of Cell Science, 2013, 126, 5030-41.	2.0	8
43	Disulfiram bolsters Tâ€cell antiâ€ŧumor immunity through direct activation of LCKâ€mediated TCR signaling. EMBO Journal, 2022, 41, .	7.8	8
44	Editorial: Membrane Lipids in T Cell Functions. Frontiers in Immunology, 2018, 9, 1608.	4.8	7
45	lonic protein-lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors. Advances in Immunology, 2019, 144, 65-85.	2.2	6
46	Positive selection-guided mutational analysis revealing two key functional sites of scorpion ERG K+ channel toxins. Biochemical and Biophysical Research Communications, 2012, 429, 111-116.	2.1	5
47	Probing Transient Release of Membrane-Sequestered Tyrosine-Based Signaling Motif by Solution NMR Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3765-3769.	4.6	4
48	Structure-function relationship of bifunctional scorpion toxin BmBKTx1. Acta Biochimica Et Biophysica Sinica, 2008, 40, 955-963.	2.0	3
49	A negative-feedback function of PKC <i>β</i> in the formation and accumulation of signaling-active B cell receptor microclusters within B cell immunological synapse. Journal of Leukocyte Biology, 2015, 97, 887-900.	3.3	3
50	The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. Scientific Reports, 2020, 10, 4126.	3.3	2
51	Screening for the Next-Generation T Cell Therapies. Cancer Cell, 2020, 37, 627-629.	16.8	1
52	A special collection of reviews on frontiers in immunology. Cell Research, 2020, 30, 827-828.	12.0	0
53	Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. European Journal of Immunology, 2021, 51, 1698-1714.	2.9	0