Prasert Reubroycharoen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4774281/publications.pdf

Version: 2024-02-01

90 papers

2,776 citations

201674 27 h-index 189892 50 g-index

90 all docs 90 docs citations

90 times ranked 3613 citing authors

#	Article	IF	CITATIONS
1	Nanocellulose: Extraction and application. Carbon Resources Conversion, 2018, 1, 32-43.	5.9	613
2	Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 2018, 190, 184-189.	10.2	134
3	Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 75, 21-30.	5 . 5	128
4	Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Management, 2016, 52, 367-374.	7.4	110
5	Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energy Conversion and Management, 2010, 51, 1428-1431.	9.2	96
6	A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose, 2017, 24, 2083-2093.	4.9	95
7	Cleaner alternative liquid fuels derived from the hydrodesulfurization of waste tire pyrolysis oil. Energy Conversion and Management, 2015, 95, 424-434.	9.2	74
8	Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent. Fuel, 2016, 174, 189-196.	6.4	70
9	Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation. Journal of CO2 Utilization, 2019, 34, 733-741.	6.8	62
10	Continuous Low-Temperature Methanol Synthesis from Syngas Using Alcohol Promoters. Energy & E	5.1	58
11	Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Advances, 2017, 7, 18561-18568.	3.6	49
12	Mechanism study on the pyrolysis of the typical ether linkages in biomass. Fuel, 2019, 249, 146-153.	6.4	48
13	Continuous Flow Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Using Highly Active and Stable Cu–Pd/Reduced Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 14210-14216.	6.7	47
14	Highly active and stable Ni supported on CNTs-SiO 2 fiber catalysts for steam reforming of ethanol. Fuel Processing Technology, 2017, 160, 185-195.	7.2	41
15	Formation and activity of activated carbon supported Ni2P catalysts for atmospheric deoxygenation of waste cooking oil. Fuel Processing Technology, 2019, 185, 117-125.	7.2	41
16	Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Management, 2020, 105, 492-500.	7.4	41
17	Solvent Regeneration of a CO ₂ -Loaded BEA–AMP Bi-Blend Amine Solvent with the Aid of a Solid BrÃ,nsted Ce(SO ₄) ₂ /ZrO ₂ Superacid Catalyst. Energy & Fuels, 2019, 33, 1334-1343.	5.1	40
18	Effect of carbon number on the production of propylene and ethylene by catalytic cracking of straight-chain alkanes over phosphorus-modified ZSM-5. Fuel Processing Technology, 2020, 202, 106367.	7.2	39

#	Article	IF	CITATIONS
19	In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of sunflower stalk to aromatic hydrocarbons over bifunctional Cu-loaded HZSM-5. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105079.	5.5	39
20	Catalytic upgrading of bio-oils over high alumina zeolites. Renewable Energy, 2019, 136, 1304-1310.	8.9	38
21	Role of copper- or cerium-promoters on NiMo/γ-Al2O3 catalysts in hydrodeoxygenation of guaiacol and bio-oil. Applied Catalysis A: General, 2019, 574, 151-160.	4.3	37
22	Probing the promotional roles of cerium in the structure and performance of Cu/SiO ₂ catalysts for ethanol production. Catalysis Science and Technology, 2018, 8, 6441-6451.	4.1	36
23	Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chemical Engineering Journal, 2015, 278, 166-173.	12.7	33
24	Biodiesel production from Hevea brasiliensis oil using SO 3 H-MCM-41 catalyst. Journal of Environmental Chemical Engineering, 2016, 4, 47-55.	6.7	33
25	Improving hydrocarbon yield by two-step pyrolysis of pinewood in a fluidized-bed reactor. Fuel Processing Technology, 2017, 159, 19-26.	7.2	32
26	Photocatalytic Desulfurization of Waste Tire Pyrolysis Oil. Energies, 2011, 4, 1880-1896.	3.1	31
27	Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel, 2021, 293, 120472.	6.4	31
28	Biodiesel Production from Refined Palm Oil using Supercritical Ethyl Acetate in A Microreactor. Energy Procedia, 2015, 79, 697-703.	1.8	28
29	Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst. Fuel, 2019, 236, 1156-1163.	6.4	27
30	Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil. Renewable Energy, 2021, 169, 283-292.	8.9	27
31	Conversion of Cellulose to Lactic Acid by Using ZrO2–Al2O3 Catalysts. Catalysts, 2017, 7, 221.	3 . 5	25
32	Evaluating the CO ₂ Capture Performance Using a BEA-AMP Biblend Amine Solvent with Novel High-Performing Absorber and Desorber Catalysts in a Bench-Scale CO ₂ Capture Pilot Plant. Energy & Description (1988) 23, 3390-3402.	5.1	25
33	Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arabian Journal of Chemistry, 2019, 12, 2028-2036.	4.9	24
34	A Wellâ€Defined Core–Shellâ€Structured Capsule Catalyst for Direct Conversion of CO ₂ into Liquefied Petroleum Gas. ChemSusChem, 2020, 13, 2060-2065.	6.8	23
35	Highly active Fischer–Tropsch synthesis Co/SiO2 catalysts prepared from microwave irradiation. Catalysis Communications, 2007, 8, 375-378.	3.3	21
36	Designing a hierarchical nanosheet ZSM-35 zeolite to realize more efficient ethanol synthesis from dimethyl ether and syngas. Catalysis Today, 2020, 343, 206-214.	4.4	21

#	Article	IF	Citations
37	A New Method of Low Temperature Methanol Synthesis. Catalysis Surveys From Asia, 2009, 13, 147-163.	2.6	20
38	Fischer–Tropsch synthesis on impregnated cobalt-based catalysts: New insights into the effect of impregnation solutions and pH value. Journal of Energy Chemistry, 2016, 25, 994-1000.	12.9	20
39	Heavy metal sequestration with a boronic acid-functionalized carbon-based adsorbent. Journal of Environmental Chemical Engineering, 2018, 6, 1147-1154.	6.7	19
40	Catalytic pyrolysis of wasted fishing net over calcined scallop shells: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis, 2020, 146, 104750.	5.5	18
41	Production of Bio Oil from Para Rubber Seed Using Pyrolysis Process. Energy Procedia, 2013, 34, 905-911.	1.8	17
42	Polyisoprene modified poly(alkyl acrylate) foam as oil sorbent material. Journal of Applied Polymer Science, 2015, 132, .	2.6	17
43	Investigation of Ni/SiO2 Fiber Catalysts Prepared by Different Methods on Hydrogen production from Ethanol Steam Reforming. Catalysts, 2018, 8, 319.	3.5	17
44	Structure–Activity Analysis and Molecular Docking Studies of Coumarins from Toddalia asiatica as Multifunctional Agents for Alzheimer's Disease. Biomedicines, 2020, 8, 107.	3.2	17
45	Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry, 2014, 20, 2153-2158.	5.8	15
46	Integrated catalytic hydrodeoxygenation of Napier grass pyrolysis vapor using a Ni2P/C catalyst. Journal of Analytical and Applied Pyrolysis, 2019, 140, 170-178.	5.5	14
47	Catalytic pyrolysis of Napier grass with nickel-copper core-shell bi-functional catalyst. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104745.	5.5	14
48	Direct biogas upgrading via CO2 methanation to high-quality biomethane over NiMg/CNT-SiO2 fiber catalysts. Fuel, 2022, 310, 122289.	6.4	13
49	Catalytic conversion of bioethanol to value-added chemicals and fuels: A review., 2022, 1, 47-68.		13
50	Ni/SiO2 fiber catalyst prepared by electrospinning technique for glycerol reforming to synthesis gas. Studies in Surface Science and Catalysis, 2010, , 689-693.	1.5	12
51	Quality improvement of oil palm shell-derived pyrolysis oil via catalytic deoxygenation over NiMoS/ \hat{l}^3 -Al2O3. Fuel, 2015, 143, 512-518.	6.4	12
52	New insights into vegetable oil pyrolysis by cold plasma technique. Energy Procedia, 2017, 138, 1153-1158.	1.8	12
53	Active Fischer-Tropsch synthesis Fe-Cu-K/SiO 2 catalysts prepared by autocombustion method without a reduction step. Journal of Energy Chemistry, 2018, 27, 432-438.	12.9	12
54	Fibrous platelet carbon nanofibers-silica fiber composite supports for a Co-based catalyst in the steam reforming of acetic acid. Applied Catalysis A: General, 2018, 560, 215-224.	4.3	12

#	Article	IF	CITATIONS
55	Direct fabrication of catalytically active Fe _x C sites by sol–gel autocombustion for preparing Fischer–Tropsch synthesis catalysts without reduction. Catalysis Science and Technology, 2016, 6, 7597-7603.	4.1	11
56	Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode. Applied Surface Science, 2018, 436, 639-645.	6.1	11
57	Influence of Inorganic Matter in Biomass on the Catalytic Production of Aromatics and Olefins in a Fluidized-Bed Reactor. Energy & Energy	5.1	10
58	Biofuel preparation from waste chicken fat using coal fly ash as a catalyst: Optimization and kinetics study in a batch reactor. Journal of Environmental Chemical Engineering, 2019, 7, 103155.	6.7	10
59	Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts, 2020, 10, 993.	3.5	10
60	Data-driven prediction of biomass pyrolysis pathways toward phenolic and aromatic products. Journal of Environmental Chemical Engineering, 2021, 9, 104836.	6.7	10
61	Multi-Target Actions of Acridones from Atalantia monophylla towards Alzheimer's Pathogenesis and Their Pharmacokinetic Properties. Pharmaceuticals, 2021, 14, 888.	3.8	10
62	Glycerol valorization through production of di-glyceryl butyl ether with sulfonic acid functionalized KIT-6 catalyst. Carbon Resources Conversion, 2020, 3, 182-189.	5.9	10
63	Olefin-rich gasoline-range hydrocarbons from oligomerization of bio-syngas over Ni/ASA catalyst. Fuel Processing Technology, 2017, 167, 702-710.	7.2	9
64	Co-production of hydrogen and carbon nanotube-silica fiber composites from ethanol steam reforming over an Ni-silica fiber catalyst. Monatshefte Fýr Chemie, 2017, 148, 1311-1321.	1.8	9
65	Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Molecular Catalysis, 2020, 484, 110724.	2.0	9
66	Catalytic Hydrotreating of Crude Pongamia pinnata Oil to Bio-Hydrogenated Diesel over Sulfided NiMo Catalyst. Energies, 2022, 15, 1547.	3.1	8
67	Enhanced \hat{l}_{\pm} -olefins selectivity by promoted CO adsorption on ZrO2@FeCu catalyst. Catalysis Today, 2021, 375, 290-297.	4.4	7
68	Bio-Oil Production from Liquid-Phase Pyrolysis of Giant Leucaena Wood. Chemistry and Technology of Fuels and Oils, 2016, 52, 360-368.	0.5	6
69	Production of furan based biofuel with an environmental benign carbon catalyst. Environmental Progress and Sustainable Energy, 2018, 37, 1455-1461.	2.3	6
70	Fe-Containing MOFs as Seeds for the Preparation of Highly Active Fe/Al-SBA-15 Catalysts in the NAlkylation of Aniline. Molecules, 2019, 24, 2695.	3.8	6
71	Continuous Supercritical Low-temperature Methanol Synthesis with <i>n</i> Supercritical Fluid. Chemistry Letters, 2008, 37, 790-791.	1.3	4
72	Inorganicâ€organic hybrid material based on amineâ€functionalized zeolite Y: A study of catalytic activity in transesterification. Canadian Journal of Chemical Engineering, 2016, 94, 530-536.	1.7	4

#	Article	IF	Citations
73	Direct synthesis of iso-paraffin fuel from palm oil on mixed heterogeneous acid and base catalysts. Monatshefte Fýr Chemie, 2017, 148, 1235-1243.	1.8	4
74	High selective monoaromatic hydrocarbon production via integrated pyrolysis and catalytic upgrading of Napier grass over Ca/Ni/boronic acid/KIT-6. Biomass Conversion and Biorefinery, 2020, 10, 423-434.	4.6	4
75	One-pot upgrading of coconut coir lignin over high-efficiency Ni2P catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106702.	6.7	4
76	A Novel, Low Temperature Synthesis Method of Dimethyl Ether Over Cu–Zn Catalyst Based on Self-Catalysis Effect of Methanol. Topics in Catalysis, 2009, 52, 1079-1084.	2.8	3
77	Pretreatment of rice straw by hot-compressed water for enzymatic saccharification. Korean Journal of Chemical Engineering, 2015, 32, 2007-2013.	2.7	3
78	Tinospora crispa-like ZSM-5/silica fibers synthesized by electrospinning and hydrothermal method. Materials Letters, 2015, 159, 135-137.	2.6	3
79	Comparison of catalytic and nonâ€catalytic pyrolysis of ten typical biomass feedstocks to produce aromatics and olefins in a fluidized bed reactor. Environmental Progress and Sustainable Energy, 2018, 37, 1371-1379.	2.3	3
80	Magnesium Oxide atalyzed Conversion of Chitin to Lactic Acid. ChemistryOpen, 2021, 10, 308-315.	1.9	3
81	Preparation of Co/SiO ₂ -Al ₂ O ₃ Fiber Catalyst by Electrospinning for Fischer-Tropsch Synthesis. Key Engineering Materials, 2015, 659, 221-225.	0.4	2
82	<i>In-situ</i> Catalytic Upgrading of Bio-oils Derived from Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin over Various Zeolites. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2019, 98, 254-258.	0.2	2
83	Hydrogen Production by Steam Reforming of Fusel Oil Using a CeCoO _x Mixedâ€Oxide Catalyst. Chemical Engineering and Technology, 2020, 43, 689-697.	1.5	2
84	Effect on the Properties of Brake Pads of Recycling Dust as Filler. Key Engineering Materials, 2019, 824, 52-58.	0.4	1
85	High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-Doped Activated Carbon for Deoxygenation. Topics in Catalysis, 2023, 66, 22-33.	2.8	1
86	Methanol Synthesis in Inert or Catalytic Supercritical Fluid. Studies in Surface Science and Catalysis, 2007, 163, 367-378.	1.5	0
87	LPG Synthesis from Syngas over Cu/ZnO-Pd-β Catalysts Prepared by Ultrasonic Spray Pyrolysis. Key Engineering Materials, 2015, 659, 252-256.	0.4	O
88	Pyrolysis of Palm Oil in a Continuous Flow Microchannel Reactor. Key Engineering Materials, 2017, 757, 166-170.	0.4	0
89	Cross-border power trade with Myanmar: barriers and their removal from the Thai's perspective. International Journal of Public Policy, 2018, 14, 30.	0.1	O
90	Heterogeneous Catalysis in Hydroxymethylfurfural Conversion to Fuels and Chemicals. , 2020, , 355-370.		0