
Dale A C Brownson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of graphene in energy production and storage applications. Journal of Power Sources, 2011, 196, 4873-4885.	4.0	819
2	Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41, 6944.	18.7	540
3	A decade of graphene research: production, applications and outlook. Materials Today, 2014, 17, 426-432.	8.3	519
4	Graphene electrochemistry: an overview of potential applications. Analyst, The, 2010, 135, 2768.	1.7	481
5	Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 2019, 101, 60-81.	8.2	473
6	Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors, 2018, 8, 53.	2.3	252
7	Electrochemistry of graphene: not such a beneficial electrode material?. RSC Advances, 2011, 1, 978.	1.7	217
8	Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale, 2014, 6, 1607-1621.	2.8	177
9	2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. Analytical Chemistry, 2016, 88, 9729-9737.	3.2	155
10	The Handbook of Graphene Electrochemistry. , 2014, , .		151
11	The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Chemical Physics, 2012, 14, 8264.	1.3	148
12	The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Physical Chemistry Chemical Physics, 2014, 16, 4598.	1.3	143
13	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	2.8	104
14	Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chemical Communications, 2012, 48, 1425-1427.	2.2	88
15	Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. Journal of Materials Chemistry A, 2013, 1, 5962.	5.2	88
16	Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes. Electroanalysis, 2011, 23, 894-899.	1.5	85
17	2D molybdenum disulphide (2D-MoS ₂) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 2016, 8, 14767-14777.	2.8	83
18	The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, The, 2012, 137, 1815.	1.7	82

DALE A C BROWNSON

#	Article	IF	CITATIONS
19	Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis. Electrochemistry Communications, 2011, 13, 111-113.	2.3	73
20	Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?. Analyst, The, 2016, 141, 2791-2799.	1.7	65
21	Graphene electrochemistry: Fabricating amperometric biosensors. Analyst, The, 2011, 136, 2084.	1.7	57
22	In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Advances, 2015, 5, 37281-37286.	1.7	57
23	Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. Royal Society Open Science, 2017, 4, 171128.	1.1	55
24	CVD graphene electrochemistry: biologically relevant molecules. Physical Chemistry Chemical Physics, 2011, 13, 20284.	1.3	53
25	CVD graphene electrochemistry: the role of graphitic islands. Physical Chemistry Chemical Physics, 2011, 13, 15825.	1.3	53
26	2D Hexagonal Boron Nitride (2Dâ€hBN) Explored as a Potential Electrocatalyst for the Oxygen Reduction Reaction. Electroanalysis, 2017, 29, 622-634.	1.5	50
27	Pencil it in: pencil drawn electrochemical sensing platforms. Analyst, The, 2016, 141, 4055-4064.	1.7	49
28	Antimicrobial activity of graphene oxide-metal hybrids. International Biodeterioration and Biodegradation, 2017, 123, 182-190.	1.9	49
29	Graphene oxide gives rise to unique and intriguing voltammetry. RSC Advances, 2012, 2, 665-668.	1.7	44
30	Electrochemistry of Q-Graphene. Nanoscale, 2012, 4, 6470.	2.8	40
31	Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes. Biosensors, 2016, 6, 45.	2.3	40
32	Mass-producible 2D-MoSe ₂ bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 74-83.	2.5	39
33	Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes. Analyst, The, 2015, 140, 1543-1550.	1.7	38
34	Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Scientific Reports, 2019, 9, 15961.	1.6	36
35	Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes. Physical Chemistry Chemical Physics, 2018, 20, 20010-20022.	1.3	35
36	CVDgraphenevs. highly ordered pyrolytic graphite for use in electroanalytical sensing. Analyst, The, 2012, 137, 833-839.	1.7	33

DALE A C BROWNSON

#	Article	IF	CITATIONS
37	Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite. Analyst, The, 2013, 138, 6354.	1.7	33
38	Exploring the origins of the apparent "electrocatalytic―oxidation of kojic acid at graphene modified electrodes. Analyst, The, 2013, 138, 4436-4442.	1.7	31
39	Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega, 2019, 4, 1947-1954.	1.6	30
40	Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) explored as a potential electrochemical sensor for dopamine: surfactants significantly influence sensor capabilities. Analyst, The, 2017, 142, 1756-1764.	1.7	29
41	Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO ₂ nanowire fabrication on edge plane sites reveals electrochemical insights. Nanoscale, 2016, 8, 15241-15251.	2.8	28
42	Electroanalytical Performance of a Freestanding Threeâ€Dimensional Graphene Foam Electrode. Electroanalysis, 2014, 26, 93-102.	1.5	26
43	Limitations of CVD graphene when utilised towards the sensing of heavy metals. RSC Advances, 2012, 2, 5385.	1.7	21
44	Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities. Biosensors, 2020, 10, 27.	2.3	21
45	High temperature low vacuum synthesis of a freestanding three-dimensional graphene nano-ribbon foam electrode. Journal of Materials Chemistry A, 2016, 4, 2617-2629.	5.2	19
46	Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified <i>via</i> a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Analytical Methods, 2021, 13, 2812-2822.	1.3	19
47	Graphene electroanalysis: Inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst, The, 2012, 137, 420-423.	1.7	13
48	Crime scene investigation III: Exploring the effects of drugs of abuse and neurotransmitters on Bloodstain Pattern Analysis. Analytical Methods, 2012, 4, 721.	1.3	13
49	Investigating the Integrity of Graphene towards the Electrochemical Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5446-5453.	1.7	11
50	Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO2 nanowires. Scientific Reports, 2019, 9, 12814.	1.6	11
51	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	2.2	11
52	Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. Nanoscale Advances, 2020, 2, 5319-5328.	2.2	10
53	The influence of lateral flake size in graphene/graphite paste electrodes: an electroanalytical investigation. Analytical Methods, 2020, 12, 2133-2142.	1.3	10
54	Crime scene investigation: The effect of drug contaminated bloodstains on bloodstain pattern analysis. Analytical Methods, 2010, 2, 1885.	1.3	9

#	Article	IF	CITATIONS
55	Crime scene investigation II: The effect of warfarin on bloodstain pattern analysis. Analytical Methods, 2011, 3, 1521.	1.3	4
56	Introduction to Graphene. , 2014, , 1-22.		4
57	Imaging the reactivity and width of graphene's boundary region. Chemical Communications, 2020, 56, 9612-9615.	2.2	4
58	Voltammetric Behaviour of Drug Molecules as a Predictor of Metabolic Liabilities. Scientia Pharmaceutica, 2020, 88, 46.	0.7	4
59	The Electrochemistry of Graphene. , 2014, , 79-126.		3
60	Graphene Applications. , 2014, , 127-174.		3