
Alexander E Gorbalenya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, 5, 536-544.	5.9	5,799
2	Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. Journal of Molecular Biology, 2003, 331, 991-1004.	2.0	1,092
3	Helicases: amino acid sequence comparisons and structure-function relationships. Current Opinion in Structural Biology, 1993, 3, 419-429.	2.6	1,058
4	Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research, 1989, 17, 4713-4730.	6.5	1,032
5	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	1.5	1,012
6	Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology, 2000, 81, 853-879.	1.3	855
7	Mechanisms and enzymes involved in SARS coronavirus genome expression. Journal of General Virology, 2003, 84, 2305-2315.	1.3	767
8	Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio, 2012, 3, .	1.8	766
9	Nidovirales: Evolving the largest RNA virus genome. Virus Research, 2006, 117, 17-37.	1.1	757
10	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	13.6	590
11	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	0.9	567
12	Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5108-5113.	3.3	524
13	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	0.9	506
14	One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3900-9.	3.3	482
15	Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8259-8263.	3.3	469
16	Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. FEBS Letters, 1989, 243, 103-114.	1.3	457
17	Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research, 1989, 17, 8413-8438.	6.5	450
18	The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology, 1991, 180, 567-582.	1.1	400

#	Article	IF	CITATIONS
19	Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient. PLoS Pathogens, 2010, 6, e1001024.	2.1	386
20	ICTV Virus Taxonomy Profile: Picornaviridae. Journal of General Virology, 2017, 98, 2421-2422.	1.3	374
21	Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. Journal of General Virology, 1992, 73, 2129-2134.	1.3	361
22	A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters, 1990, 262, 145-148.	1.3	336
23	Putative papain-related thiol proteases of positive-strand RNA viruses Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, α- and coronaviruses. FEBS Letters, 1991, 288, 201-205.	1.3	333
24	A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Archives of Virology, 2003, 148, 2207-2235.	0.9	311
25	Crystal structure of dimeric HIV-1 capsid protein. Nature Structural and Molecular Biology, 1996, 3, 763-770.	3.6	308
26	Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Research, 1989, 17, 4847-4861.	6.5	303
27	The NS5A Protein of Hepatitis C Virus Is a Zinc Metalloprotein. Journal of Biological Chemistry, 2004, 279, 48576-48587.	1.6	301
28	A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Letters, 1988, 235, 16-24.	1.3	278
29	N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research, 1989, 17, 3889-3897.	6.5	264
30	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	0.9	263
31	Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12694-12699.	3.3	254
32	The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3792-3796.	3.3	254
33	Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host and Microbe, 2012, 11, 607-616.	5.1	242
34	Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-TÂ=Â3 virion architecture. Archives of Virology, 2008, 153, 715-27.	0.9	237
35	SARS-Coronavirus Replication/Transcription Complexes Are Membrane-Protected and Need a Host Factor for Activity In Vitro. PLoS Pathogens, 2008, 4, e1000054.	2.1	229
36	A second, non-canonical RNA-dependent RNA polymerase in SARS Coronavirus. EMBO Journal, 2006, 25, 4933-4942.	3.5	224

Alexander E Gorbalenya

#	Article	IF	CITATIONS
37	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	5.9	221
38	Hepatitis C Virus RNA Polymerase and NS5A Complex with a SNARE-like Protein. Virology, 1999, 263, 30-41.	1.1	220
39	Coronavirus Nonstructural Protein 16 Is a Cap-0 Binding Enzyme Possessing (Nucleoside-2′ <i>O</i>) Tj ETQq1	1 0.78431 1.5	L4 rgBT /O∨ 220
40	A conserved NTP-motif in putative helicases. Nature, 1988, 333, 22-22.	13.7	216
41	Severe Acute Respiratory Syndrome Coronavirus Phylogeny: toward Consensus. Journal of Virology, 2004, 78, 7863-7866.	1.5	205
42	An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution, 1989, 28, 256-268.	0.8	203
43	The Palm Subdomain-based Active Site is Internally Permuted in Viral RNA-dependent RNA Polymerases of an Ancient Lineage. Journal of Molecular Biology, 2002, 324, 47-62.	2.0	202
44	The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 2020, 5, 668-674.	5.9	198
45	Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Research, 2015, 43, 8416-8434.	6.5	197
46	Organization and evolution of bacterial and bacteriophage primase-helicase systems. Journal of Molecular Evolution, 1992, 34, 351-357.	0.8	196
47	The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket. Journal of Virology, 2009, 83, 6534-6545.	1.5	195
48	Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. Lancet, The, 2020, 395, e42-e43.	6.3	182
49	A non-canonical Lon proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO Journal, 2000, 19, 114-123.	3.5	170
50	Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathogens, 2011, 7, e1002215.	2.1	169
51	ADP-Ribose-1"-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture. Journal of Virology, 2005, 79, 12721-12731.	1.5	142
52	VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. Journal of General Virology, 2004, 85, 2221-2229.	1.3	142
53	The Arterivirus Nsp2 Protease Journal of Biological Chemistry, 1995, 270, 16671-16676.	1.6	133
54	The Autocatalytic Release of a Putative RNA Virus Transcription Factor from Its Polyprotein Precursor Involves Two Paralogous Papain-like Proteases That Cleave the Same Peptide Bond. Journal of Biological Chemistry, 2001, 276, 33220-33232.	1.6	131

#	Article	IF	CITATIONS
55	The NS5A/NS5 Proteins of Viruses from Three Genera of the Family <i>Flaviviridae</i> Are Phosphorylated by Associated Serine/Threonine Kinases. Journal of Virology, 1998, 72, 6199-6206.	1.5	126
56	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015). Archives of Virology, 2015, 160, 1837-1850.	0.9	126
57	Superfamily of UvrA-related NTP-binding proteins. Journal of Molecular Biology, 1990, 213, 583-591.	2.0	124
58	Temporal Modulation of an Autoprotease Is Crucial for Replication and Pathogenicity of an RNA Virus. Journal of Virology, 2004, 78, 10765-10775.	1.5	121
59	The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses. PLoS Pathogens, 2013, 9, e1003500.	2.1	114
60	Selfâ€splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Science, 1994, 3, 1117-1120.	3.1	113
61	A Complex Zinc Finger Controls the Enzymatic Activities of Nidovirus Helicases. Journal of Virology, 2005, 79, 696-704.	1.5	108
62	A planarian nidovirus expands the limits of RNA genome size. PLoS Pathogens, 2018, 14, e1007314.	2.1	108
63	Viral cysteine proteinases. Journal of Computer - Aided Molecular Design, 1996, 6, 64-86.	1.0	106
64	The Arterivirus Nsp4 Protease Is the Prototype of a Novel Group of Chymotrypsin-like Enzymes, the 3C-like Serine Proteases. Journal of Biological Chemistry, 1996, 271, 4864-4871.	1.6	105
65	Proteolytic Processing of the Open Reading Frame 1b-Encoded Part of Arterivirus Replicase Is Mediated by nsp4 Serine Protease and Is Essential for Virus Replication. Journal of Virology, 1999, 73, 2027-2037.	1.5	104
66	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	0.9	102
67	Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Letters, 1986, 194, 253-257.	1.3	101
68	Mouse Hepatitis Virus Strain A59 RNA Polymerase Gene ORF 1a: Heterogeneity among MHV Strains. Virology, 1994, 198, 736-740.	1.1	99
69	The Predicted Metal-Binding Region of the Arterivirus Helicase Protein Is Involved in Subgenomic mRNA Synthesis, Genome Replication, and Virion Biogenesis. Journal of Virology, 2000, 74, 5213-5223.	1.5	99
70	Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Letters, 1991, 291, 277-281.	1.3	98
71	Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Archives of Virology, 2012, 157, 1623-1628.	0.9	98
72	Analysis of the functional significance of amino acid residues in the putative NTP-binding pattern of the poliovirus 2C protein. Journal of General Virology, 1992, 73, 1977-1986.	1.3	97

#	Article	IF	CITATIONS
73	Induction of Intracellular Membrane Rearrangements by HAV Proteins 2C and 2BC. Virology, 1997, 237, 66-77.	1.1	96
74	Site-directed mutagenesis of La protease. FEBS Letters, 1991, 287, 211-214.	1.3	94
75	Biochemical Characterization of Arterivirus Nonstructural Protein 11 Reveals the Nidovirus-Wide Conservation of a Replicative Endoribonuclease. Journal of Virology, 2009, 83, 5671-5682.	1.5	93
76	Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005185.	2.1	93
77	Genetic studies on the poliovirus 2C protein, an NTPase A plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization. Journal of Molecular Biology, 1994, 236, 1310-1323.	2.0	92
78	Alphavirus Nucleocapsid Protein Contains a Putative Coiled Coil α-Helix Important for Core Assembly. Journal of Virology, 2001, 75, 1-10.	1.5	90
79	Coronavirus replication–transcription complex: Vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	90
80	Molecular Analysis of Three Ljungan Virus Isolates Reveals a New, Close-to-Root Lineage of the Picornaviridae with a Cluster of Two Unrelated 2A Proteins. Journal of Virology, 2002, 76, 8920-8930.	1.5	89
81	Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. Journal of General Virology, 2006, 87, 3473-3482.	1.3	89
82	Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9457-9462.	3.3	89
83	Understanding the alphaviruses: Recent research on important emerging pathogens and progress towards their control. Antiviral Research, 2010, 87, 111-124.	1.9	88
84	Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infection, Genetics and Evolution, 2012, 12, 1577-1585.	1.0	84
85	Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Letters, 1989, 252, 42-46.	1.3	83
86	Norwalk Virus N-Terminal Nonstructural Protein Is Associated with Disassembly of the Golgi Complex in Transfected Cells. Journal of Virology, 2004, 78, 4827-4837.	1.5	77
87	Site-Directed Mutagenesis of the Nidovirus Replicative Endoribonuclease NendoU Exerts Pleiotropic Effects on the Arterivirus Life Cycle. Journal of Virology, 2006, 80, 1653-1661.	1.5	77
88	Picornavirus non-structural proteins as targets for new anti-virals with broad activity. Antiviral Research, 2011, 89, 204-218.	1.9	76
89	Partitioning the Genetic Diversity of a Virus Family: Approach and Evaluation through a Case Study of Picornaviruses. Journal of Virology, 2012, 86, 3890-3904.	1.5	73
90	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	0.9	72

#	Article	IF	CITATIONS
91	Structure of Arterivirus nsp4. Journal of Biological Chemistry, 2002, 277, 39960-39966.	1.6	71
92	From Stockholm to Malawi: recent developments in studying human polyomaviruses. Journal of General Virology, 2013, 94, 482-496.	1.3	71
93	Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. Journal of General Virology, 2001, 82, 2927-2933.	1.3	71
94	Mutational analysis of the active centre of coronavirus 3C-like proteases. Journal of General Virology, 2002, 83, 581-593.	1.3	68
95	Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Letters, 1988, 236, 287-290.	1.3	65
96	Structural and Functional Characterization of Sapovirus RNA-Dependent RNA Polymerase. Journal of Virology, 2007, 81, 1858-1871.	1.5	65
97	Encephalomyocarditis virus-specific polypeptide p22 is involved in the processing of the viral precursor polypeptides. FEBS Letters, 1979, 108, 1-5.	1.3	64
98	The 3C-Like Proteinase of an Invertebrate Nidovirus Links Coronavirus and Potyvirus Homologs. Journal of Virology, 2003, 77, 1415-1426.	1.5	64
99	ICTV Virus Taxonomy Profile: Arteriviridae 2021. Journal of General Virology, 2021, 102, .	1.3	64
100	A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1889-94.	3.3	63
101	A Human RNA Viral Cysteine Proteinase That Depends upon a Unique Zn2+-binding Finger Connecting the Two Domains of a Papain-like Fold. Journal of Biological Chemistry, 1999, 274, 14918-14925.	1.6	61
102	Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Research, 2010, 87, 149-161.	1.9	57
103	Arterivirus Nsp1 Modulates the Accumulation of Minus-Strand Templates to Control the Relative Abundance of Viral mRNAs. PLoS Pathogens, 2010, 6, e1000772.	2.1	57
104	Proteolytic Processing at the Amino Terminus of Human Coronavirus 229E Gene 1-Encoded Polyproteins: Identification of a Papain-Like Proteinase and Its Substrate. Journal of Virology, 1998, 72, 910-918.	1.5	55
105	Big Nidovirus Genome. Advances in Experimental Medicine and Biology, 2001, , 1-17.	0.8	53
106	Toward Genetics-Based Virus Taxonomy: Comparative Analysis of a Genetics-Based Classification and the Taxonomy of Picornaviruses. Journal of Virology, 2012, 86, 3905-3915.	1.5	52
107	What we know but do not understand about nidovirus helicases. Virus Research, 2015, 202, 12-32.	1.1	52
108	Autogenous translation regulation byEscherichia coliATPase SecA may be mediated by an intrinsic RNA helicase activity of this protein. FEBS Letters, 1992, 298, 6-8.	1.3	51

#	Article	IF	CITATIONS
109	Human Coronavirus 229E Papain-Like Proteases Have Overlapping Specificities but Distinct Functions in Viral Replication. Journal of Virology, 2007, 81, 3922-3932.	1.5	51
110	Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus. Virology, 2009, 394, 1-7.	1.1	50
111	Non-canonical inteins. Nucleic Acids Research, 1998, 26, 1741-1748.	6.5	49
112	Genetics, Pathogenesis and Evolution of Picornaviruses. , 1999, , 287-343.		49
113	Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology, 2006, 344, 453-467.	1.1	49
114	Papain-Like Protease 1 from Transmissible Gastroenteritis Virus: Crystal Structure and Enzymatic Activity toward Viral and Cellular Substrates. Journal of Virology, 2010, 84, 10063-10073.	1.5	49
115	Evidence for Functional Protein Interactions Required for Poliovirus RNA Replication. Journal of Virology, 2006, 80, 5327-5337.	1.5	47
116	Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Research, 2014, 42, 3464-3477.	6.5	47
117	Arterivirus Subgenomic mRNA Synthesis and Virion Biogenesis Depend on the Multifunctional nsp1 Autoprotease. Journal of Virology, 2007, 81, 10496-10505.	1.5	46
118	The in Vitro RNA Synthesizing Activity of the Isolated Arterivirus Replication/Transcription Complex Is Dependent on a Host Factor. Journal of Biological Chemistry, 2008, 283, 16525-16536.	1.6	45
119	Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. Journal of General Virology, 2006, 87, 651-656.	1.3	43
120	Encephalomyocarditis virus-specific polypeptide p22 possessing a proteolytic activity. FEBS Letters, 1979, 108, 6-9.	1.3	40
121	Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology, 2021, 558, 145-151.	1.1	40
122	Practical application of bioinformatics by the multidisciplinary VIZIER consortium. Antiviral Research, 2010, 87, 95-110.	1.9	39
123	One more conserved sequence motif in helicases. Nucleic Acids Research, 1988, 16, 7734-7734.	6.5	37
124	Organ-Specific Attenuation of Murine Hepatitis Virus Strain A59 by Replacement of Catalytic Residues in the Putative Viral Cyclic Phosphodiesterase ns2. Journal of Virology, 2009, 83, 3743-3753.	1.5	37
125	A nidovirus perspective on SARS-CoV-2. Biochemical and Biophysical Research Communications, 2021, 538, 24-34.	1.0	37
126	Birnavirus RNA polymerase is related to polymerase of positive strand RNA viruses. Nucleic Acids Research, 1988, 16, 7735-7735.	6.5	36

#	Article	IF	CITATIONS
127	Crystal structures of the Xâ€domains of a Groupâ€1 and a Groupâ€3 coronavirus reveal that ADPâ€riboseâ€binding may not be a conserved property. Protein Science, 2009, 18, 6-16.	3.1	36
128	Evolution of RNA genomes: Does the high mutation rate necessitate high rate of evolution of viral proteins?. Journal of Molecular Evolution, 1989, 28, 524-527.	0.8	34
129	Nidovirales. , 2008, , 419-430.		31
130	Euprosterna elaeasa virus genome sequence and evolution of the Tetraviridae family: Emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology, 2010, 397, 145-154.	1.1	30
131	The European Virus Archive goes global: A growing resource for research. Antiviral Research, 2018, 158, 127-134.	1.9	30
132	The "Bridge―in the Epstein-Barr Virus Alkaline Exonuclease Protein BGLF5 Contributes to Shutoff Activity during Productive Infection. Journal of Virology, 2012, 86, 9175-9187.	1.5	28
133	N7-Methylation of the Coronavirus RNA Cap Is Required for Maximal Virulence by Preventing Innate Immune Recognition. MBio, 2022, 13, e0366221.	1.8	27
134	The VIZIER project: Preparedness against pathogenic RNA viruses. Antiviral Research, 2008, 78, 37-46.	1.9	26
135	An insect picornavirus may have genome organization similar to that of caliciviruses. FEBS Letters, 1992, 297, 81-86.	1.3	25
136	Mutagenesis Analysis of the nsp4 Main Proteinase Reveals Determinants of Arterivirus Replicase Polyprotein Autoprocessing. Journal of Virology, 2006, 80, 3428-3437.	1.5	23
137	Structure of the C-terminal domain of nsp4 from feline coronavirus. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 839-846.	2.5	23
138	Related domains in yeast tRNA ligase, bacteriophage T4 polynucleotide kinase and RNA ligase, and mammalian myelin 2',3/-cyclic nucleotide phosphohydrolase revealed by amino acid squence comparison. FEBS Letters, 1990, 268, 231-234.	1.3	22
139	Genetics-Based Classification of Filoviruses Calls for Expanded Sampling of Genomic Sequences. Viruses, 2012, 4, 1425-1437.	1.5	22
140	Domain Organization and Evolution of the Highly Divergent 5′ Coding Region of Genomes of Arteriviruses, Including the Novel Possum Nidovirus. Journal of Virology, 2017, 91, .	1.5	22
141	Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases. FEBS Letters, 1994, 340, 25-28.	1.3	20
142	Structural Basis for Antiviral Inhibition of the Main Protease, 3C, from Human Enterovirus 93. Journal of Virology, 2011, 85, 10764-10773.	1.5	20
143	Construction of the full local similarity map for two biopolymers. BioSystems, 1993, 30, 57-63.	0.9	19
144	Proteolytic activity of the nonstructural polypeptide p22 of encephalomyocarditis virus. Biochemical and Biophysical Research Communications, 1981, 98, 952-960.	1.0	18

#	Article	IF	CITATIONS
145	Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein. MSphere, 2016, 1, .	1.3	18
146	Science, not speculation, is essential to determine how SARS-CoV-2 reached humans. Lancet, The, 2021, 398, 209-211.	6.3	18
147	RNA-binding properties of nonstructural polypeptide G of encephalomyocarditis virus. Virology, 1978, 88, 183-185.	1.1	17
148	Two early genes of bacteriophage T5 encode proteins containing an NTP-binding sequence motif and probably involved in DNA replication, recombination and repair. FEBS Letters, 1989, 252, 47-52.	1.3	17
149	The 2C putative helicase of echovirus 30 adopts a hexameric ring-shaped structure. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1116-1120.	2.5	17
150	Identification of tolerated insertion sites in poliovirus non-structural proteins. Virology, 2011, 409, 1-11.	1.1	17
151	Structure of the X (ADRP) domain of nsp3 from feline coronavirus. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1292-1300.	2.5	16
152	Origin of RNA viral genomes; approaching the problem by comparative sequence analysis. , 1995, , 49-66.		15
153	Functional Characterization of the Cleavage Specificity of the Sapovirus Chymotrypsin-Like Protease. Journal of Virology, 2008, 82, 8085-8093.	1.5	15
154	Expression, purification, and in vitro activity of an arterivirus main proteinase. Virus Research, 2006, 120, 97-106.	1.1	14
155	No novel coronaviruses identified in a large collection of human nasopharyngeal specimens using family-wide CODEHOP-based primers. Archives of Virology, 2013, 158, 251-255.	0.9	14
156	Increasing the number of available ranks in virus taxonomy from five to ten and adopting the Baltimore classes as taxa at the basal rank. Archives of Virology, 2018, 163, 2933-2936.	0.9	14
157	Arterivirus nsp12 versus the coronavirus nsp16 2′-O-methyltransferase: comparison of the C-terminal cleavage products of two nidovirus pp1ab polyproteins. Journal of General Virology, 2015, 96, 2643-2655.	1.3	14
158	Tale of two serines. Nature, 1989, 338, 467-468.	13.7	13
159	Design and validation of consensus-degenerate hybrid oligonucleotide primers for broad and sensitive detection of corona- and toroviruses. Journal of Virological Methods, 2011, 177, 174-183.	1.0	13
160	Phylogeny of Viruses â~†. , 2017, , .		13
161	Bioinformatics of virus taxonomy: foundations and tools for developing sequence-based hierarchical classification. Current Opinion in Virology, 2022, 52, 48-56.	2.6	13
162	Recognizing species as a new focus of virus research. PLoS Pathogens, 2021, 17, e1009318.	2.1	12

Alexander E Gorbalenya

#	Article	IF	CITATIONS
163	Evidence for functional significance of the permuted C motif in Co2+-stimulated RNA-dependent RNA polymerase of infectious bursal disease virus. Journal of General Virology, 2007, 88, 2824-2833.	1.3	11
164	Interspecific adaptation by binary choice at de novo polyomavirus T antigen site through accelerated codon-constrained Val-Ala toggling within an intrinsically disordered region. Nucleic Acids Research, 2015, 43, 4800-4813.	6.5	11
165	Limited variation during circulation of a polyomavirus in the human population involves the COCO-VA toggling site of Middle and Alternative T-antigen(s). Virology, 2016, 487, 129-140.	1.1	10
166	Arterivirus RNA-dependent RNA polymerase: Vital enzymatic activity remains elusive. Virology, 2016, 487, 68-74.	1.1	10
167	Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology, 2019, 533, 21-33.	1.1	10
168	Adp-Ribose-1―Phosphatase Activities of the Human Coronavirus 229E and Sars Coronavirus X Domains. Advances in Experimental Medicine and Biology, 2006, 581, 93-96.	0.8	10
169	Genomics and Evolution of the Nidovirales. , 0, , 15-28.		8
170	PCR assays for detection of human astroviruses: In silico evaluation and design, and in vitro application to samples collected from patients in the Netherlands. Journal of Clinical Virology, 2018, 108, 83-89.	1.6	7
171	Taxonomy of Viruses. , 2019, , .		7
172	LAMPA, LArge Multidomain Protein Annotator, and its application to RNA virus polyproteins. Bioinformatics, 2020, 36, 2731-2739.	1.8	7
173	SNAD: sequence name annotation-based designer. BMC Bioinformatics, 2009, 10, 251.	1.2	6
174	Genome-wide diversity of Zika virus: Exploring spatio-temporal dynamics to guide a new nomenclature proposal. Virus Evolution, 2022, 8, veac029.	2.2	5
175	Insertion of short hepatitis virus A amino acid sequences into poliovirus antigenic determinants results in viable progeny. FEBS Letters, 1989, 257, 354-356.	1.3	4
176	Editorial [Hot Topic: Workshop on the Definition of Protein Domains and their Likelihood of Crystallization (Guest Editors: Oliviero Carugo, Kristina Djinovic, Sasha Gorbalenya and Paul Tucker)]. Current Protein and Peptide Science, 2007, 8, 119-120.	0.7	2
177	Translating genomic exploration of the family Polyomaviridae into confident human polyomavirus detection. IScience, 2022, 25, 103613.	1.9	2
178	Arterivirus Papain-like Proteinase 1α. , 2013, , 2199-2204.		1
179	Arterivirus Papain-like Proteinase 1β. , 2013, , 2205-2210.		1
180	Arterivirus nsp2 Cysteine Proteinase. , 2013, , 2210-2215.		1

#	Article	IF	CITATIONS
181	Structure of the C-terminal domain of NSP4 from feline infection peritonitis virus. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s167-s167.	0.3	1
182	Crystal structure of the TGEV papain-like protease 1 (PLpro1). Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s167-s167.	0.3	1
183	Enveloped, Positive-Strand RNA Viruses (Nidovirales). , 2008, , 256-266.		1
184	Editorial overview: Virus bioinformatics - empowering genomics of pathogens, viromes, and the virosphere across divergence scales. Current Opinion in Virology, 2022, 52, 161-165.	2.6	1
185	Origin and Evolution of the <i>Picornaviridae</i> Proteome. , 0, , 253-270.		Ο
186	How to recognise and deal with dubious virus sequences?. Infection, Genetics and Evolution, 2020, 81, 104242.	1.0	0
187	Phylogeny of Viruses. , 2021, , 116-123.		0
188	Birnavirus VP4 Processing Endopeptidase. , 2013, , 3517-3523.		0
189	Arterivirus Serine Endopeptidase. , 2013, , 3137-3141.		0
190	Taxonomy Advancement and Genome Size Change: Two Perspectives on RNA Virus Genetic Diversity. , 2016, , 215-232.		0