Pranoti S Mandrekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research methodologies to address clinical unmet needs and challenges in alcoholâ€associated liver disease. Hepatology, 2022, 75, 1026-1037.	7.3	22
2	Myeloid Endoplasmic Reticulum Resident Chaperone GP96 Facilitates Inflammation and Steatosis in Alcoholâ€Associated Liver Disease. Hepatology Communications, 2021, 5, 1165-1182.	4.3	10
3	Alcoholâ€Associated Liver Disease Before and After COVIDâ€19—An Overview and Call for Ongoing Investigation. Hepatology Communications, 2021, 5, 1616-1621.	4.3	42
4	Chronic alcohol-induced liver injury correlates with memory deficits: Role for neuroinflammation. Alcohol, 2020, 83, 75-81.	1.7	20
5	Editorial: Macrophages in Liver Disease. Frontiers in Immunology, 2020, 11, 1754.	4.8	1
6	Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. Current Pathobiology Reports, 2020, 8, 47-59.	3.4	0
7	Targeting Epigenetic Mechanisms to Alleviate Alcoholic Steatosis. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 713-714.	4.5	1
8	Inhibition of HSP90 and Activation of HSF1 Diminish Macrophage NLRP3 Inflammasome Activity in Alcoholâ€Associated Liver Injury. Alcoholism: Clinical and Experimental Research, 2020, 44, 1300-1311.	2.4	33
9	Summary of the 2019 alcohol and immunology research interest group (AIRIG) meeting: Alcohol-mediated mechanisms of multiple organ injury. Alcohol, 2020, 87, 89-95.	1.7	9
10	Alcohol-induced adipose tissue macrophage phenotypic switching is independent of myeloid Toll-like receptor 4 expression. American Journal of Physiology - Cell Physiology, 2019, 317, C687-C700.	4.6	9
11	Chaperones in Sterile Inflammation and Injury. Heat Shock Proteins, 2019, , 155-177.	0.2	4
12	Summary of the 2018 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol, 2019, 77, 11-18.	1.7	4
13	Human Binge Alcohol Intake Inhibits TLR4–MyD88 and TLR4–TRIF Responses but Not the TLR3–TRIF Pathway: HspA1A and PP1 Play Selective Regulatory Roles. Journal of Immunology, 2018, 200, 2291-2303.	0.8	26
14	A Comparative Study of Single and Dual Perfusion During End-ischemic Subnormothermic Liver Machine Preservation. Transplantation Direct, 2018, 4, e400.	1.6	6
15	Advancing hepatology research: Excellence in open access. Hepatology Communications, 2017, 1, 83-83.	4.3	Ο
16	Alcohol and Cancer: Mechanisms and Therapies. Biomolecules, 2017, 7, 61.	4.0	87
17	Alcoholic hepatitis: Translational approaches to develop targeted therapies. Hepatology, 2016, 64, 1343-1355.	7.3	91
18	Sexual Dimorphism in Alcohol Induced Adipose Inflammation Relates to Liver Injury. PLoS ONE, 2016, 11, e0164225.	2.5	46

2

#	Article	IF	CITATIONS
19	Summary of the 2014 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol, 2015, 49, 767-772.	1.7	2
20	Identifying Molecular Targets to Improve Immune Function in Alcoholic Hepatitis. Gastroenterology, 2015, 148, 498-501.	1.3	12
21	Alcohol and inflammatory responses: Summary of the 2013 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol, 2015, 49, 1-6.	1.7	19
22	Macrophages and Alcohol-Related Liver Inflammation. , 2015, 37, 251-62.		40
23	Immunity and inflammatory signaling in alcoholic liver disease. Hepatology International, 2014, 8, 439-446.	4.2	13
24	Moderate Alcohol Induces Stress Proteins HSF1 and hsp70 and Inhibits Proinflammatory Cytokines Resulting in Endotoxin Tolerance. Journal of Immunology, 2014, 193, 1975-1987.	0.8	58
25	Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. Journal of Hepatology, 2014, 61, 903-911.	3.7	65
26	Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. Journal of Leukocyte Biology, 2013, 94, 1167-1184.	3.3	249
27	Oxidative Stress and Inflammation: Essential Partners in Alcoholic Liver Disease. International Journal of Hepatology, 2012, 2012, 1-9.	1.1	170
28	Cellular Signaling Pathways in Alcoholic Liver Disease. , 2012, , .		3
29	Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology, 2012, 55, 1585-1595.	7.3	77
30	Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology, 2011, 53, 649-660.	7.3	110
31	An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: Regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology, 2011, 54, 2185-2197.	7.3	242
32	Up-regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor α (TNFα) Production via Increased mRNA Half-life in Alcoholic Liver Disease. Journal of Biological Chemistry, 2011, 286, 1436-1444.	3.4	359
33	Epigenetic regulation in alcoholic liver disease. World Journal of Gastroenterology, 2011, 17, 2456.	3.3	78
34	Inflammation and Liver Injury. Molecular Pathology Library, 2011, , 411-425.	0.1	0
35	Toll-Like Receptors in the Pathogenesis of Alcoholic Liver Disease. Gastroenterology Research and Practice, 2010, 2010, 1-12.	1.5	86
36	Focus on: Alcohol and the liver. Alcohol Research, 2010, 33, 87-96.	1.0	15

Pranoti S Mandrekar

#	Article	IF	CITATIONS
37	The Opposite Effects of Acute and Chronic Alcohol on Lipopolysaccharide-Induced Inflammation Are Linked to IRAK-M in Human Monocytes. Journal of Immunology, 2009, 183, 1320-1327.	0.8	167
38	A Recent Perspective on Alcohol, Immunity, and Host Defense. Alcoholism: Clinical and Experimental Research, 2009, 33, 220-232.	2.4	328
39	MicroRNA Expression Profile in Lieberâ€DeCarli Dietâ€Induced Alcoholic and Methionine Choline Deficient Dietâ€Induced Nonalcoholic Steatohepatitis Models in Mice. Alcoholism: Clinical and Experimental Research, 2009, 33, 1704-1710.	2.4	171
40	Signalling pathways in alcohol-induced liver inflammation. Journal of Hepatology, 2009, 50, 1258-1266.	3.7	406
41	The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology, 2008, 48, 1224-1231.	7.3	348
42	Acute Alcohol Intake Induces SOCS1 and SOCS3 and Inhibits Cytokineâ€Induced STAT1 and STAT3 Signaling in Human Monocytes. Alcoholism: Clinical and Experimental Research, 2008, 32, 1565-1573.	2.4	57
43	Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-α regulation. Journal of Leukocyte Biology, 2008, 84, 1335-1345.	3.3	59
44	Acute Alcohol Exposure Exerts Anti-Inflammatory Effects by Inhibiting lκB Kinase Activity and p65 Phosphorylation in Human Monocytes. Journal of Immunology, 2007, 178, 7686-7693.	0.8	48
45	Acute alcohol activates STAT3, AP-1, and Sp-1 transcription factors via the family of Src kinases to promote IL-10 production in human monocytes. Journal of Leukocyte Biology, 2007, 82, 752-762.	3.3	67
46	Viral and Host Factors Induce Macrophage Activation and Loss of Toll-Like Receptor Tolerance in Chronic HCV Infection. Gastroenterology, 2007, 133, 1627-1636.	1.3	185
47	Signaling mechanisms in alcoholic liver injury: Role of transcription factors, kinases and heat shock proteins. World Journal of Gastroenterology, 2007, 13, 4979.	3.3	15
48	Moderate Alcohol Intake in Humans Attenuates Monocyte Inflammatory Responses: Inhibition of Nuclear Regulatory Factor Kappa B and Induction of Interleukin 10. Alcoholism: Clinical and Experimental Research, 2006, 30, 135-139.	2.4	131
49	Pattern recognition receptors: A contemporary view on liver diseases. Hepatology, 2006, 44, 287-298.	7.3	159
50	Heme Oxygenase-1 Mediates the Anti-Inflammatory Effects of Acute Alcohol on IL-10 Induction Involving p38 MAPK Activation in Monocytes. Journal of Immunology, 2006, 177, 2592-2600.	0.8	112
51	TLR2- and TLR4-Mediated Signals Determine Attenuation or Augmentation of Inflammation by Acute Alcohol in Monocytes. Journal of Immunology, 2006, 176, 7628-7635.	0.8	77
52	Increased Lipopolysaccharide Sensitivity in Alcoholic Fatty Livers Is Independent of Leptin Deficiency and Toll-Like Receptor 4 (TLR4) or TLR2 mRNA Expression. Alcoholism: Clinical and Experimental Research, 2005, 29, 1018-1026.	2.4	23
53	Toll-like receptor 2 mediates inflammatory cytokine induction but not sensitization for liver injury by Propioni- bacterium acnes. Journal of Leukocyte Biology, 2005, 78, 1255-1264.	3.3	29
54	Inhibition of Myeloid Dendritic Cell Accessory Cell Function and Induction of T Cell Anergy by Alcohol Correlates with Decreased IL-12 Production. Journal of Immunology, 2004, 173, 3398-3407.	0.8	109

Pranoti S Mandrekar

#	Article	IF	CITATIONS
55	Diverse regulation of NF-?B and peroxisome proliferator-activated receptors in murine nonalcoholic fatty liver. Hepatology, 2004, 40, 376-385.	7.3	82
56	Selective priming to Toll-like receptor 4 (TLR4), not TLR2, ligands byP. acnes involves up-regulation of MD-2 in mice. Hepatology, 2004, 40, 555-564.	7.3	64
57	Inhibition of antigen-presenting cell functions by alcohol: implications for hepatitis C virus infection. Alcohol, 2004, 33, 241-249.	1.7	38
58	Additive Inhibition of Dendritic Cell Allostimulatory Capacity by Alcohol and Hepatitis C Is Not Restored by DC Maturation and Involves Abnormal IL-10 and IL-2 Induction. Alcoholism: Clinical and Experimental Research, 2003, 27, 1023-1031.	2.4	52
59	Hepatitis C Virus Core and Nonstructural Protein 3 Proteins Induce Pro- and Anti-inflammatory Cytokines and Inhibit Dendritic Cell Differentiation. Journal of Immunology, 2003, 170, 5615-5624.	0.8	231
60	Additive Inhibition of Dendritic Cell Allostimulatory Capacity by Alcohol and Hepatitis C Is Not Restored by DC Maturation and Involves Abnormal IL-10 and IL-2 Induction. Alcoholism: Clinical and Experimental Research, 2003, 27, 1023-1031.	2.4	31
61	Acute Alcohol Inhibits the Induction of Nuclear Regulatory Factor kappaB Activation Through CD14/Toll-Like Receptor 4, Interleukin-1, and Tumor Necrosis Factor Receptors: A Common Mechanism Independent of Inhibitory kappaBalpha Degradation?. Alcoholism: Clinical and Experimental Research, 2002, 26, 1609-1614.	2.4	33
62	Inhibition of NF-kappaB Binding Correlates With Increased Nuclear Glucocorticoid Receptor Levels in Acute Alcohol-Treated Human Monocytes. Alcoholism: Clinical and Experimental Research, 2002, 26, 1872-1879.	2.4	13
63	Acute alcohol inhibits the induction of nuclear regulatory factor kappa B activation through CD14/toll-like receptor 4, interleukin-1, and tumor necrosis factor receptors: a common mechanism independent of inhibitory kappa B alpha degradation?. Alcoholism: Clinical and Experimental Research, 2002, 26, 1609-14.	2.4	18
64	Inhibition of NF-kappa B binding correlates with increased nuclear glucocorticoid receptor levels in acute alcohol-treated human monocytes. Alcoholism: Clinical and Experimental Research, 2002, 26, 1872-9.	2.4	8
65	Reduced Alloreactive T-Cell Activation After Alcohol Intake is Due to Impaired Monocyte Accessory Cell Function and Correlates With Elevated IL-10, IL-13, and Decreased IFNgamma Levels. Alcoholism: Clinical and Experimental Research, 2001, 25, 1766-1772.	2.4	63
66	Interferon alpha and Alcohol Augment Nuclear Regulatory Factor-kappaB Activation in HepG2 Cells, and Interferon alpha Increases Pro-Inflammatory Cytokine Production. Alcoholism: Clinical and Experimental Research, 2001, 25, 1188-1197.	2.4	15
67	Inhibition of lipopolysaccharide-mediated NFκB activation by ethanol in human monocytes. International Immunology, 1999, 11, 1781-1790.	4.0	128
68	Acute alcohol consumption attenuates interleukin-8 (IL-8) and monocyte chemoattractant peptide-1 (MCP-1) induction in response to ex vivo stimulation. Journal of Clinical Immunology, 1999, 19, 67-76.	3.8	72
69	Alcohol-Induced Regulation of Nuclear Regulatory Factor-Kbeta in Human Monocytes. Alcoholism: Clinical and Experimental Research, 1997, 21, 988-994.	2.4	56
70	HUMAN MONOCYTE IL-10 PRODUCTION IS INCREASED BY ACUTE ETHANOL TREATMENT. Cytokine, 1996, 8, 567-577.	3.2	80
71	Regulation of Human Monocyte Functions by Acute Ethanol Treatment: Decreased Tumor Necrosis Factor?, Interleukin-l? and Elevated Interleukin-10, and Transforming Growth Factor-? Production. Alcoholism: Clinical and Experimental Research, 1996, 20, 900-907.	2.4	218