

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 2022, 11, 2025-2036.	2.9	16
2	Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 2022, 11, 2085-2096.	2.9	50
3	All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions. Optics Express, 2021, 29, 3524.	1.7	12
4	Multifunctional Metasurfaces: Design Principles and Device Realizations. Synthesis Lectures on Materials and Optics, 2021, 2, 1-184.	0.2	1
5	Efficient generation of complex vectorial optical fields with metasurfaces. Light: Science and Applications, 2021, 10, 67.	7.7	75
6	Engineering single-molecule fluorescence with asymmetric nano-antennas. Light: Science and Applications, 2021, 10, 79.	7.7	18
7	Topologyâ€Induced Phase Transitions in Spinâ€Orbit Photonics. Laser and Photonics Reviews, 2021, 15, 2000492.	4.4	55
8	Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Advanced Photonics, 2021, 3, .	6.2	138
9	Achromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics, 2021, 10, 1123-1131.	2.9	27
10	Ultra-broadband perfect absorber based on self-organizing multi-scale plasmonic nanostructures. Applied Materials Today, 2021, , 101266.	2.3	4
11	Excite Spoof Surface Plasmons with Tailored Wavefronts Using Highâ€Efficiency Terahertz Metasurfaces. Advanced Science, 2020, 7, 2000982.	5.6	67
12	Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light: Science and Applications, 2020, 9, 158.	7.7	26
13	Controlling angular dispersions in optical metasurfaces. Light: Science and Applications, 2020, 9, 76.	7.7	95
14	Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 2020, 12, 5374-5379.	2.8	92
15	Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces. Optics Express, 2020, 28, 15601.	1.7	9
16	A complete phase diagram for dark-bright coupled plasmonic systems: applicability of Fano's formula. Nanophotonics, 2020, 9, 3251-3262.	2.9	17
17	Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 2020, 9, 3473-3481.	2.9	39
18	High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 2020, 10, 685-695.	2.9	23

#	Article	IF	CITATIONS
19	Scatterings and wavefront manipulations of surface plasmon polaritons. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 157804.	0.2	2
20	A review of high-efficiency Pancharatnam–Berry metasurfaces. Terahertz Science & Technology, 2020, 13, 73-89.	0.5	8
21	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002.	1.0	146
22	Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light: Science and Applications, 2019, 8, 16.	7.7	107
23	Scatterings from surface plasmons to propagating waves at plasmonic discontinuities. Science Bulletin, 2019, 64, 802-807.	4.3	12
24	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	12.1	324
25	Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research, 2019, 2019, 1849272.	2.8	204
26	Control the Wave-front and Polarization of Light Simultaneously with High-efficiency Meta-surfaces. , 2019, , .		0
27	Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls. Physical Review Applied, 2018, 9, .	1.5	18
28	Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems. Journal of Physics Condensed Matter, 2018, 30, 114002.	0.7	7
29	Flat optical transparent window: mechanism and realization based on metasurfaces. Journal Physics D: Applied Physics, 2018, 51, 074001.	1.3	26
30	Deterministic Approach to Achieve Broadband Polarization-Independent Diffusive Scatterings Based on Metasurfaces. ACS Photonics, 2018, 5, 1691-1702.	3.2	113
31	Plasmonic Metasurfaces for Switchable Photonic Spin–Orbit Interactions Based on Phase Change Materials. Advanced Science, 2018, 5, 1800835.	5.6	109
32	Angular Dispersions in Terahertz Metasurfaces: Physics and Applications. Physical Review Applied, 2018, 9, .	1.5	43
33	Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Optics Express, 2018, 26, 11728.	1.7	188
34	Highâ€Efficiency Metasurfaces: Principles, Realizations, and Applications. Advanced Optical Materials, 2018, 6, 1800415.	3.6	250
35	Dielectric meta-walls for surface plasmon focusing and Bessel beam generation. Europhysics Letters, 2018, 122, 67002.	0.7	8
36	Multifunctional Metasurfaces Based on the "Merging―Concept and Anisotropic Single-Structure Meta-Atoms. Applied Sciences (Switzerland), 2018, 8, 555.	1.3	39

#	Article	IF	CITATIONS
37	High-efficiency generation of Bessel beams with transmissive metasurfaces. Applied Physics Letters, 2018, 112, .	1.5	48
38	High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Scientific Reports, 2017, 7, 1354.	1.6	77
39	Ultra-wide band reflective metamaterial wave plates for terahertz waves. Europhysics Letters, 2017, 117, 37007.	0.7	44
40	High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Physical Review Applied, 2017, 8, .	1.5	190
41	Transmissive Ultrathin Pancharatnam-Berry Metasurfaces with nearly 100% Efficiency. Physical Review Applied, 2017, 7, .	1.5	198
42	Highâ€Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries. Advanced Optical Materials, 2017, 5, 1600506.	3.6	208
43	Far-field and near-field wavefront manipulations enabled by metasurfaces. , 2017, , .		0
44	Tailor the functionalities of metasurfaces based on a complete phase diagram. , 2016, , .		2
45	Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Scientific Reports, 2016, 6, 27503.	1.6	112
46	Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Scientific Reports, 2016, 6, 38255.	1.6	113
47	Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Applied Physics Letters, 2016, 109, .	1.5	54
48	The effective-medium theories for one-dimensional gratings and subwavelength cylinder arrays. , 2016, , \cdot		0
49	Multifunctional Microstrip Array Combining a Linear Polarizer and Focusing Metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64, 3676-3682.	3.1	135
50	Polarization-controlled bifunctional metasurfaces in transmission and reflection geometries. , 2016, ,		1
51	High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science and Applications, 2016, 5, e16003-e16003.	7.7	232
52	Fractal plasmonic metamaterials: physics and applications. Nanotechnology Reviews, 2015, 4, .	2.6	8
53	Spin Hall Effect: Photonic Spin Hall Effect with Nearly 100% Efficiency (Advanced Optical Materials) Tj ETQq1 1	0.784314	rgBT /Overloo
54	Metasurfaces: Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions (Advanced Optical Materials 10/2015). Advanced Optical Materials, 2015, 3, 1478-1478.	3.6	1

#	Article	IF	CITATIONS
55	Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Physical Review Letters, 2015, 115, 235503.	2.9	230
56	Effective-medium theory for one-dimensional gratings. Physical Review B, 2015, 91, .	1.1	23
57	A bi-layered quad-band metamaterial absorber at terahertz frequencies. Journal of Applied Physics, 2015, 118, .	1.1	76
58	Recent advances on metasurfaces. , 2015, , .		1
59	Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions. Advanced Optical Materials, 2015, 3, 1405-1410.	3.6	105
60	Experimental verifications on an effective model for photonic coupling. Optics Letters, 2015, 40, 272.	1.7	7
61	Superlensing and hyperlensing effect realized with Optic-Null transformation optical medium based on metamaterials. , 2015, , .		Ο
62	Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces. Physical Review X, 2015, 5, .	2.8	173
63	Metamaterial-based design for a half-wavelength plate in the terahertz range. Applied Physics A: Materials Science and Processing, 2015, 119, 467-473.	1.1	6
64	Photonic Spin Hall Effect with Nearly 100% Efficiency. Advanced Optical Materials, 2015, 3, 1102-1108.	3.6	252
65	Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science and Applications, 2015, 4, e324-e324.	7.7	461
66	Recent advances on metasurfaces. , 2015, , .		0
67	Full-range Gate-controlled Terahertz Phase Modulation with Graphene Metasurfaces. , 2015, , .		Ο
68	Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, 105, .	1.5	368
69	Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations. Chinese Physics B, 2014, 23, 047808.	0.7	11
70	Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping. Optics Express, 2013, 21, 18178.	1.7	25
71	Mode-expansion theory for inhomogeneous meta-surfaces. Optics Express, 2013, 21, 27219.	1.7	25
72	Optic-null medium: realization and applications. Optics Express, 2013, 21, 28948.	1.7	46

#	Article	IF	CITATIONS
73	A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhysics Letters, 2013, 101, 54002.	0.7	37
74	Metamaterials to bridge propagating waves with surface waves and control electromagnetic waves. , 2013, , .		1
75	Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37, 4940.	1.7	255
76	A new method for obtaining transparent electrodes. Optics Express, 2012, 20, 22770.	1.7	52
77	Enhancement of light-matter interactions in slow-wave metasurfaces. Physical Review B, 2012, 85, .	1.1	12
78	Making transparent metals based on scattering cancellations. , 2012, , .		0
79	Making a continuous metal film transparent via scattering cancellations. Applied Physics Letters, 2012, 101, .	1.5	52
80	High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Letters, 2012, 12, 6223-6229.	4.5	1,120
81	A new mechanism to design transparent electrodes: THz realizations. , 2012, , .		0
82	A hyperlens realized by a plasmonic metamaterial. , 2012, , .		0
83	Reflectionless ultrathin microwave waveplate based on metamaterials. , 2012, , .		0
84	A flat metamaterial lens working in reflection geometry. , 2012, , .		0
85	Multi-hybrid method for investigation of EM scattering from inhomogeneous object above a dielectric rough surface. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1781-1790.	2.0	0
86	Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11, 426-431.	13.3	1,617
87	Metamaterials to bridge propagating waves with surface waves and control electromagnetic waves. , 2012, , .		0
88	Super imaging with a plasmonic metamaterial: Role of aperture shape. Metamaterials, 2011, 5, 112-118.	2.2	14
89	A transparent metamaterial to manipulate electromagnetic wave polarizations. Optics Letters, 2011, 36, 927.	1.7	126
90	Tight-binding analysis of coupling effects in metamaterials. Journal of Applied Physics, 2011, 109, 023103.	1.1	11

#	Article	IF	CITATIONS
91	Band-edge-induced Bragg diffraction in two-dimensional photonic crystals. Optics Letters, 2006, 31, 1184.	1.7	7
92	Controlling electromagnetic waves with meta-surfaces. SPIE Newsroom, 0, , .	0.1	0