Qiong He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773067/publications.pdf

Version: 2024-02-01

76326 76900 8,906 92 40 74 citations h-index g-index papers 92 92 92 4949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11, 426-431.	27.5	1,617
2	High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Letters, 2012, 12, 6223-6229.	9.1	1,120
3	Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science and Applications, 2015, 4, e324-e324.	16.6	461
4	Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, 105, .	3. 3	368
5	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	25.5	324
6	Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37, 4940.	3.3	255
7	Photonic Spin Hall Effect with Nearly 100% Efficiency. Advanced Optical Materials, 2015, 3, 1102-1108.	7.3	252
8	Highâ€Efficiency Metasurfaces: Principles, Realizations, and Applications. Advanced Optical Materials, 2018, 6, 1800415.	7.3	250
9	High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science and Applications, 2016, 5, e16003-e16003.	16.6	232
10	Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Physical Review Letters, 2015, 115, 235503.	7.8	230
11	Highâ€Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries. Advanced Optical Materials, 2017, 5, 1600506.	7.3	208
12	Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research, 2019, 2019, 1849272.	5.7	204
13	Transmissive Ultrathin Pancharatnam-Berry Metasurfaces with nearly 100% Efficiency. Physical Review Applied, 2017, 7, .	3.8	198
14	High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Physical Review Applied, 2017, 8, .	3.8	190
15	Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Optics Express, 2018, 26, 11728.	3.4	188
16	Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces. Physical Review X, 2015, 5, .	8.9	173
17	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002.	2.2	146
18	Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Advanced Photonics, 2021, 3, .	11.8	138

#	Article	IF	Citations
19	Multifunctional Microstrip Array Combining a Linear Polarizer and Focusing Metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64, 3676-3682.	5.1	135
20	A transparent metamaterial to manipulate electromagnetic wave polarizations. Optics Letters, 2011, 36, 927.	3.3	126
21	Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Scientific Reports, 2016, 6, 38255.	3.3	113
22	Deterministic Approach to Achieve Broadband Polarization-Independent Diffusive Scatterings Based on Metasurfaces. ACS Photonics, 2018, 5, 1691-1702.	6.6	113
23	Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Scientific Reports, 2016, 6, 27503.	3.3	112
24	Plasmonic Metasurfaces for Switchable Photonic Spin–Orbit Interactions Based on Phase Change Materials. Advanced Science, 2018, 5, 1800835.	11.2	109
25	Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light: Science and Applications, 2019, 8, 16.	16.6	107
26	Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions. Advanced Optical Materials, 2015, 3, 1405-1410.	7.3	105
27	Controlling angular dispersions in optical metasurfaces. Light: Science and Applications, 2020, 9, 76.	16.6	95
28	Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 2020, 12, 5374-5379.	5.6	92
29	High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Scientific Reports, 2017, 7, 1354.	3.3	77
30	A bi-layered quad-band metamaterial absorber at terahertz frequencies. Journal of Applied Physics, 2015, 118, .	2.5	76
31	Efficient generation of complex vectorial optical fields with metasurfaces. Light: Science and Applications, 2021, 10, 67.	16.6	7 5
32	Excite Spoof Surface Plasmons with Tailored Wavefronts Using Highâ€Efficiency Terahertz Metasurfaces. Advanced Science, 2020, 7, 2000982.	11.2	67
33	Topologyâ€Induced Phase Transitions in Spinâ€Orbit Photonics. Laser and Photonics Reviews, 2021, 15, 2000492.	8.7	55
34	Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Applied Physics Letters, 2016, 109, .	3.3	54
35	A new method for obtaining transparent electrodes. Optics Express, 2012, 20, 22770.	3.4	52
36	Making a continuous metal film transparent via scattering cancellations. Applied Physics Letters, 2012, 101, .	3. 3	52

#	Article	IF	Citations
37	Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 2022, 11, 2085-2096.	6.0	50
38	High-efficiency generation of Bessel beams with transmissive metasurfaces. Applied Physics Letters, 2018, 112, .	3.3	48
39	Optic-null medium: realization and applications. Optics Express, 2013, 21, 28948.	3.4	46
40	Ultra-wide band reflective metamaterial wave plates for terahertz waves. Europhysics Letters, 2017, 117, 37007.	2.0	44
41	Angular Dispersions in Terahertz Metasurfaces: Physics and Applications. Physical Review Applied, 2018, 9, .	3.8	43
42	Multifunctional Metasurfaces Based on the "Merging―Concept and Anisotropic Single-Structure Meta-Atoms. Applied Sciences (Switzerland), 2018, 8, 555.	2.5	39
43	Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 2020, 9, 3473-3481.	6.0	39
44	A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhysics Letters, 2013, 101, 54002.	2.0	37
45	Achromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics, 2021, 10, 1123-1131.	6.0	27
46	Flat optical transparent window: mechanism and realization based on metasurfaces. Journal Physics D: Applied Physics, 2018, 51, 074001.	2.8	26
47	Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light: Science and Applications, 2020, 9, 158.	16.6	26
48	Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping. Optics Express, 2013, 21, 18178.	3.4	25
49	Mode-expansion theory for inhomogeneous meta-surfaces. Optics Express, 2013, 21, 27219.	3.4	25
50	Effective-medium theory for one-dimensional gratings. Physical Review B, 2015, 91, .	3.2	23
51	High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 2020, 10, 685-695.	6.0	23
52	Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls. Physical Review Applied, 2018, 9, .	3.8	18
53	Engineering single-molecule fluorescence with asymmetric nano-antennas. Light: Science and Applications, 2021, 10, 79.	16.6	18
54	A complete phase diagram for dark-bright coupled plasmonic systems: applicability of Fano's formula. Nanophotonics, 2020, 9, 3251-3262.	6.0	17

2

#	Article	IF	CITATIONS
55	High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 2022, 11, 2025-2036.	6.0	16
56	Super imaging with a plasmonic metamaterial: Role of aperture shape. Metamaterials, 2011, 5, 112-118.	2.2	14
57	Enhancement of light-matter interactions in slow-wave metasurfaces. Physical Review B, 2012, 85, .	3.2	12
58	Scatterings from surface plasmons to propagating waves at plasmonic discontinuities. Science Bulletin, 2019, 64, 802-807.	9.0	12
59	All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions. Optics Express, 2021, 29, 3524.	3.4	12
60	Tight-binding analysis of coupling effects in metamaterials. Journal of Applied Physics, 2011, 109, 023103.	2.5	11
61	Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations. Chinese Physics B, 2014, 23, 047808.	1.4	11
62	Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces. Optics Express, 2020, 28, 15601.	3.4	9
63	Fractal plasmonic metamaterials: physics and applications. Nanotechnology Reviews, 2015, 4, .	5.8	8
64	Dielectric meta-walls for surface plasmon focusing and Bessel beam generation. Europhysics Letters, 2018, 122, 67002.	2.0	8
65	A review of high-efficiency Pancharatnam–Berry metasurfaces. Terahertz Science & Technology, 2020, 13, 73-89.	0.5	8
66	Band-edge-induced Bragg diffraction in two-dimensional photonic crystals. Optics Letters, 2006, 31, 1184.	3.3	7
67	Experimental verifications on an effective model for photonic coupling. Optics Letters, 2015, 40, 272.	3.3	7
68	Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems. Journal of Physics Condensed Matter, 2018, 30, 114002.	1.8	7
69	Metamaterial-based design for a half-wavelength plate in the terahertz range. Applied Physics A: Materials Science and Processing, 2015, 119, 467-473.	2.3	6
70	Ultra-broadband perfect absorber based on self-organizing multi-scale plasmonic nanostructures. Applied Materials Today, 2021, , 101266.	4.3	4
71	Spin Hall Effect: Photonic Spin Hall Effect with Nearly 100% Efficiency (Advanced Optical Materials) Tj ETQq1 1	0.784314	rgBT /Overloc

Tailor the functionalities of metasurfaces based on a complete phase diagram. , 2016, , .

72

#	Article	lF	CITATIONS
73	Scatterings and wavefront manipulations of surface plasmon polaritons. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 157804.	0.5	2
74	Metamaterials to bridge propagating waves with surface waves and control electromagnetic waves. , 2013, , .		1
75	Metasurfaces: Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions (Advanced Optical Materials 10/2015). Advanced Optical Materials, 2015, 3, 1478-1478.	7.3	1
76	Recent advances on metasurfaces. , 2015, , .		1
77	Polarization-controlled bifunctional metasurfaces in transmission and reflection geometries. , 2016, , .		1
78	Multifunctional Metasurfaces: Design Principles and Device Realizations. Synthesis Lectures on Materials and Optics, 2021, 2, 1-184.	0.2	1
79	Making transparent metals based on scattering cancellations. , 2012, , .		0
80	A new mechanism to design transparent electrodes: THz realizations. , 2012, , .		0
81	A hyperlens realized by a plasmonic metamaterial. , 2012, , .		0
82	Reflectionless ultrathin microwave waveplate based on metamaterials. , 2012, , .		0
83	A flat metamaterial lens working in reflection geometry. , 2012, , .		O
84	Multi-hybrid method for investigation of EM scattering from inhomogeneous object above a dielectric rough surface. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1781-1790.	5.1	0
85	Superlensing and hyperlensing effect realized with Optic-Null transformation optical medium based on metamaterials. , $2015, $, .		О
86	The effective-medium theories for one-dimensional gratings and subwavelength cylinder arrays. , 2016, , .		0
87	Far-field and near-field wavefront manipulations enabled by metasurfaces. , 2017, , .		O
88	Metamaterials to bridge propagating waves with surface waves and control electromagnetic waves. , 2012, , .		0
89	Controlling electromagnetic waves with meta-surfaces. SPIE Newsroom, 0, , .	0.1	0
90	Recent advances on metasurfaces. , 2015, , .		0

#	Article	IF	CITATIONS
91	Full-range Gate-controlled Terahertz Phase Modulation with Graphene Metasurfaces. , 2015, , .		O
92	Control the Wave-front and Polarization of Light Simultaneously with High-efficiency Meta-surfaces. , 2019, , .		0