Hirotaka Ejima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013, 341, 154-157.	12.6	1,683
2	Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks. Angewandte Chemie - International Edition, 2014, 53, 5546-5551.	13.8	781
3	Innovation in Layer-by-Layer Assembly. Chemical Reviews, 2016, 116, 14828-14867.	47.7	678
4	Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 2017, 12, 136-148.	11.9	411
5	Coordination-Driven Multistep Assembly of Metal–Polyphenol Films and Capsules. Chemistry of Materials, 2014, 26, 1645-1653.	6.7	303
6	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. Small, 2015, 11, 2032-2036.	10.0	216
7	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of Materials, 2015, 27, 5825-5832.	6.7	177
8	Tunicate-Inspired Gallol Polymers for Underwater Adhesive: A Comparative Study of Catechol and Gallol. Biomacromolecules, 2017, 18, 2959-2966.	5.4	164
9	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie - International Edition, 2016, 55, 13803-13807.	13.8	147
10	Tough Elastomers with Superior Selfâ€Recoverability Induced by Bioinspired Multiphase Design. Advanced Functional Materials, 2017, 27, 1701670.	14.9	142
11	Seawater-Assisted Self-Healing of Catechol Polymers via Hydrogen Bonding and Coordination Interactions. ACS Applied Materials & Interfaces, 2016, 8, 19047-19053.	8.0	138
12	Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. ACS Biomaterials Science and Engineering, 2019, 5, 5578-5596.	5.2	105
13	Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. Soft Matter, 2014, 10, 2656-2663.	2.7	102
14	Polymers with autonomous self-healing ability and remarkable reprocessability under ambient humidity conditions. Journal of Materials Chemistry A, 2018, 6, 19643-19652.	10.3	81
15	Antioxidant and Adsorption Properties of Bioinspired Phenolic Polymers: A Comparative Study of Catechol and Gallol. ACS Sustainable Chemistry and Engineering, 2016, 4, 3857-3863.	6.7	78
16	Preparation of Nano―and Microcapsules by Electrophoretic Polymer Assembly. Angewandte Chemie - International Edition, 2013, 52, 6455-6458.	13.8	70
17	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	21.0	64
18	Endocytic pHâ€Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials, 2014, 26, 1901-1905.	21.0	60

Hirotaka Ejima

#	Article	IF	CITATIONS
19	Boronate–Phenolic Network Capsules with Dual Response to Acidic pH and <i>cis</i> â€Điols. Advanced Healthcare Materials, 2015, 4, 1796-1801.	7.6	60
20	Immersive Polymer Assembly on Immobilized Particles for Automated Capsule Preparation. Advanced Materials, 2013, 25, 6874-6878.	21.0	56
21	Non-swellable self-healing polymer with long-term stability under seawater. RSC Advances, 2017, 7, 19288-19295.	3.6	54
22	Phenolic film engineering for template-mediated microcapsule preparation. Polymer Journal, 2014, 46, 452-459.	2.7	52
23	Morphology-Retaining Carbonization of Honeycomb-Patterned Hyperbranched Poly(phenylene) Tj ETQq1 1 0.78	4314 rgB1 4.8	Overlock
24	Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano, 2012, 6, 10186-10194.	14.6	49
25	Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry and Engineering, 2019, 7, 6287-6294.	6.7	49
26	Peptideâ€Tunable Drug Cytotoxicity via One‣tep Assembled Polymer Nanoparticles. Advanced Materials, 2014, 26, 2398-2402.	21.0	44
27	Nearâ€Incompressible Faceted Polymer Microcapsules from Metalâ€Organic Framework Templates. Advanced Materials, 2013, 25, 5767-5771.	21.0	41
28	Surface Engineering of Extracellular Vesicles through Chemical and Biological Strategies. Chemistry of Materials, 2019, 31, 2191-2201.	6.7	41
29	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. Advanced Science, 2015, 2, 1400007.	11.2	40
30	Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups. Nature Communications, 2022, 13, 1892.	12.8	40
31	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal–Phenolic Network Films. Biomacromolecules, 2019, 20, 1421-1428.	5.4	35
32	Biological Identification of Peptides that Specifically Bind to Poly(phenylene vinylene) Surfaces: Recognition of the Branched or Linear Structure of the Conjugated Polymer. Langmuir, 2010, 26, 17278-17285.	3.5	33
33	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. ACS Applied Materials & Interfaces, 2016, 8, 7449-7455.	8.0	28
34	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie, 2016, 128, 14007-14011.	2.0	27
35	Effect of molecular weight and polymer composition on gallol-functionalized underwater adhesive. Journal of Materials Chemistry B, 2020, 8, 6798-6801.	5.8	24
36	Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. Nanoscale, 2016, 8, 15589-15596.	5.6	22

Hirotaka Ejima

#	Article	IF	CITATIONS
37	Tough Supramolecular Elastomer via Entropy-Driven Hydrogen Bonds between Vicinal Diols. Macromolecules, 2020, 53, 4121-4125.	4.8	21
38	Bio-inspired immobilization of low-fouling phospholipid polymers <i>via</i> a simple dipping process: a comparative study of phenol, catechol and gallol as tethering groups. Polymer Chemistry, 2020, 11, 249-253.	3.9	20
39	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. Nanoscale, 2014, 6, 13416-13420.	5.6	17
40	Stereoselective Synthesis of Tabtoxinine-β-lactam by Using the Vinylogous Mukaiyama Aldol Reaction with Acetate-Type Vinylketene Silyl <i>N</i> , <i>O</i> -Acetal and α-Keto-β-lactam. Organic Letters, 2017, 19, 2530-2532.	4.6	14
41	Peptide-Based Switching of Polymer Fluorescence in Aqueous phase. Chemistry of Materials, 2010, 22, 6032-6034.	6.7	13
42	Nanostructured Thin Films of Polymer Blends by Directional Crystallization onto Crystallizable Organic Solvent. Macromolecules, 2007, 40, 6445-6447.	4.8	10
43	Conjugated polymer nanoparticles hybridized with the peptide aptamer. Chemical Communications, 2011, 47, 7707.	4.1	10
44	Polydopamineâ€Mediated Surface Functionalization of Exosomes. ChemNanoMat, 2021, 7, 592-595.	2.8	8
45	Multivalent Directed Assembly of Colloidal Particles. Angewandte Chemie - International Edition, 2013, 52, 3314-3316.	13.8	7
46	Synthesis of Dithiocatechol-Pendant Polymers. Journal of the American Chemical Society, 2022, 144, 2450-2454.	13.7	7
47	Dispersion of Carbon Nanotubes in Water by Noncovalent Wrapping with Peptides Screened by Phage Display. Chemistry Letters, 2011, 40, 880-882.	1.3	5
48	Formation of Hierarchical Lamellaeâ€inâ€Lamella Nanostructures from Polymer Blends Via Controlled Nonequilibrium Freezing. Macromolecular Rapid Communications, 2015, 36, 1664-1668.	3.9	3
49	Periodic nanopatterns from polymer blends via directional solidification and subsequent epitaxial crystallization. Polymer Journal, 2015, 47, 498-504.	2.7	3
50	Epitaxy-driven Nanostructure Formation in Polymer Blend Thin Films Containing Regioregular Poly(3-hexylthiophene). Chemistry Letters, 2016, 45, 604-606.	1.3	3
51	Alignment of Gold Nanorods in Directionally Solidified Polymer Blends. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 259-264.	0.3	0
52	A Simple and Feasible Synthetic Strategy towards Poly(4â€ŧhiostyrene). Macromolecular Chemistry and Physics, 0, , 2200092.	2.2	0