Zheng-Kang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4772629/publications.pdf

Version: 2024-02-01

172386 214721 6,183 48 29 47 citations g-index h-index papers 49 49 49 3061 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32, 809.	2.0	1,289
2	Presentâ \in day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 2007, 112, .	3.3	719
3	Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 2005, 110, .	3.3	556
4	Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2009, 2, 718-724.	5.4	495
5	Presentâ€Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018774.	1.4	425
6	Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research, 1996, 101, 27957-27980.	3.3	303
7	Oblique, High-Angle, Listric-Reverse Faulting and Associated Development of Strain: The Wenchuan Earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 2010, 38, 353-382.	4.6	260
8	Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. Journal of Geophysical Research, 1993, 98, 21677-21712.	3.3	247
9	Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. Journal of Geophysical Research, 2000, 105, 5721-5734.	3.3	215
10	Postseismic deformation following the Landers earthquake, California, 28 June 1992. Bulletin of the Seismological Society of America, 1994, 84, 780-791.	1.1	178
11	Crustal deformation along the Altyn Tagh fault system, western China, from GPS. Journal of Geophysical Research, 2001, 106, 30607-30621.	3.3	177
12	GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 2008, 51, 1267-1283.	0.9	127
13	Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 2014, 632, 281-292.	0.9	88
14	GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan, China, earthquake and its tectonic implications. Geophysical Research Letters, 2014, 41, 407-413.	1.5	86
15	The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System. Geophysical Research Letters, 2018, 45, 2230-2240.	1.5	7 5
16	Presentâ€day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements. Geophysical Research Letters, 2015, 42, 5227-5235.	1.5	68
17	Heat flow distribution in Chinese continent and its adjacent areas. Progress in Natural Science: Materials International, 2008, 18, 843-849.	1.8	66
18	Extracting the regional commonâ€mode component of GPS station position time series from dense continuous network. Journal of Geophysical Research: Solid Earth, 2016, 121, 1080-1096.	1.4	51

#	Article	IF	CITATIONS
19	Fault network modeling of crustal deformation in California constrained using GPS and geologic observations. Tectonophysics, 2014, 612-613, 1-17.	0.9	49
20	Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Science Bulletin, 2011, 56, 2419-2424.	1.7	46
21	Fault geometry and slip distribution of the 2008 <i>M</i> _w 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements. Geophysical Journal International, 2017, 208, 748-766.	1.0	45
22	Block-like versus distributed crustal deformation around the northeastern Tibetan plateau. Journal of Asian Earth Sciences, 2017, 140, 31-47.	1.0	43
23	Postseismic Deformation of the 2008 Wenchuan Earthquake Illuminates Lithospheric Rheological Structure and Dynamics of Eastern Tibet. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022399.	1.4	38
24	GEOSCIENCE: Southern California Deformation. Science, 1997, 277, 1621-1622.	6.0	37
25	Earthquake Potential in Californiaâ€Nevada Implied by Correlation of Strain Rate and Seismicity. Geophysical Research Letters, 2018, 45, 1778-1785.	1.5	37
26	Crustal deformation measured in Southern California. Eos, 1997, 78, 477.	0.1	36
27	Viscoelastic Triggering Between Large Earthquakes along the East Kunlun Fault System. Chinese Journal of Geophysics, 2003, 46, 1125-1138.	0.2	36
28	Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	36
29	Impoundment of the Zipingpu reservoir and triggering of the 2008 M w 7.9 Wenchuan earthquake, China. Journal of Geophysical Research: Solid Earth, 2015, 120, 7033-7047.	1.4	34
30	Earthquake potential of the Sichuan-Yunnan region, western China. Journal of Asian Earth Sciences, 2015, 107, 232-243.	1.0	33
31	Mechanical constraints on inversion of coseismic geodetic data for fault slip and geometry: Example from InSAR observation of the 6 October 2008 <i>M</i> <csub><i>w</i>6.3 Dangxiong-Yangyi (Tibet) earthquake. Journal of Geophysical Research, 2011, 116, .</csub>	3.3	30
32	GPS determined coseismic slip of the $2021 < i > M < i > w < 7.4$ Maduo, China, earthquake and its tectonic implication. Geophysical Journal International, 2021, 228, 2048-2055.	1.0	27
33	Crustal velocity field near the big bend of California's San Andreas Fault. Journal of Geophysical Research, 1996, 101, 3173-3185.	3.3	26
34	Integration of GPS and InSAR Data for Resolving 3â€Dimensional Crustal Deformation. Earth and Space Science, 2020, 7, e2019EA001036.	1.1	26
35	Recovery of secular deformation field of Mojave Shear Zone in Southern California from historical terrestrial and GPS measurements. Journal of Geophysical Research: Solid Earth, 2015, 120, 3965-3990.	1.4	24
36	The Effect and Correction of Non-Tectonic Crustal Deformation on Continuous GPS Position Time Series. Chinese Journal of Geophysics, 2005, 48, 1121-1129.	0.2	23

#	Article	IF	Citations
37	The 2019 Ridgecrest, California earthquake sequence: Evolution of seismic and aseismic slip on an orthogonal fault system. Earth and Planetary Science Letters, 2021, 570, 117066.	1.8	21
38	A probabilistic seismic hazard model for Mainland China. Earthquake Spectra, 2020, 36, 181-209.	1.6	17
39	On the Relevance of Geodetic Deformation Rates to Earthquake Potential. Geophysical Research Letters, 2021, 48, e2021GL093231.	1.5	16
40	3D GNSS Velocity Field Sheds Light on the Deformation Mechanisms in Europe: Effects of the Vertical Crustal Motion on the Distribution of Seismicity. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	16
41	A threeâ€step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 <i>M_w</i> 6.9 Yushu, China, earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 4599-4627.	1.4	14
42	Thin crÃ"me brûlée rheological structure for the Eastern California Shear Zone. Geology, 2021, 49, 216-221.	2.0	14
43	The 2019 Mw 5.8 Changning, China earthquake: A cascade rupture of fold-accommodation faults induced by fluid injection. Tectonophysics, 2021, 801, 228721.	0.9	12
44	Coseismic Slip Distribution of the 2001 Kunlun Mountain Pass West Earthquake Constrained by GPS and Insar Data. Chinese Journal of Geophysics, 2008, 51, 753-764.	0.2	10
45	Deviatoric Stress Level Estimation According to Principle Axes Rotation of Stress Field before and After Large Strike-Slip Type Earthquake and Stress Drop. Chinese Journal of Geophysics, 2006, 49, 731-739.	0.2	7
46	Far-field coseismic displacements associated with the great Sumatra earthquakes of December 26, 2004 and March 29, 2005 constrained by Global Positioning System. Science Bulletin, 2006, 51, 1771-1775.	1.7	4
47	Visco-elastic stress triggering model of Tangshan earthquake sequence. Acta Seismologica Sinica, 2008, 21, 585-597.	0.2	1
48	Reply [to "Comment on â€~Crustal deformation measured in Southern California'â€]. Eos, 1998, 79, 260	-26001	0