David Haddleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4772579/publications.pdf

Version: 2024-02-01

380 papers 23,148 citations

83 h-index 130 g-index

397 all docs

397 docs citations

times ranked

397

13674 citing authors

#	Article	IF	CITATIONS
1	Synthesis of a castor oil-based quaternary ammonium surfactant and its application in the modification of attapulgite. Tenside, Surfactants, Detergents, 2022, 59, 31-38.	0.5	2
2	Photoinduced Controlled/Living Polymerizations. Angewandte Chemie - International Edition, 2022, 61,	7.2	64
3	Photoinduced Controlled/Living Polymerizations. Angewandte Chemie, 2022, 134, .	1.6	5
4	Functional pH-responsive polymers containing dynamic enaminone linkages for the release of active organic amines. Polymer Chemistry, 2022, 13, 2362-2374.	1.9	4
5	Heterotelechelic homopolymers mimicking high <i>ä+</i> – ultralow <i>N</i> block copolymers with sub-2 nm domain size. Chemical Science, 2022, 13, 4019-4028.	3.7	4
6	P10 Rapid capture of uropathogenic bacteria and on-chip determination of antimicrobial resistance. JAC-Antimicrobial Resistance, 2022, 4, .	0.9	0
7	Polymerization of Myrcene in Both Conventional and Renewable Solvents: Postpolymerization Modification via Regioselective Photoinduced Thiol–Ene Chemistry for Use as Carbon Renewable Dispersants. ACS Sustainable Chemistry and Engineering, 2022, 10, 9654-9664.	3.2	10
8	Self-healing and mechanical performance of dynamic glycol chitosan hydrogel nanocomposites. Journal of Materials Chemistry B, 2021, 9, 809-823.	2.9	19
9	Glycopolymer Functionalized Nanoparticles and Their Applications. , 2021, , 209-249.		O
10	Homo- and co-polymerisation of di(propylene glycol) methyl ether methacrylate – a new monomer. Polymer Chemistry, 2021, 12, 3522-3532.	1.9	11
11	Cationic Glycopolymers with Aggregation-Induced Emission for the Killing, Imaging, and Detection of Bacteria. Biomacromolecules, 2021, 22, 2224-2232.	2.6	15
12	Controlling the Particle Size in Surfactant-Free Latexes from ω-Propenyl Oligomers Obtained through Catalytic Chain Transfer Polymerization. ACS Applied Polymer Materials, 2021, 3, 3185-3196.	2.0	5
13	Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers, 2021, 13, 2458.	2.0	13
14	Block copolymers based on ethylene and methacrylates using a combination of catalytic chain transfer polymerisation (CCTP) and radical polymerization. Angewandte Chemie, 2021, 133, 25560.	1.6	0
15	Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angewandte Chemie - International Edition, 2021, 60, 25356-25364.	7.2	5
16	Synthesis of biodegradable liquid-core microcapsules composed of isocyanate functionalized poly(ε-caprolactone)-containing copolymers. European Polymer Journal, 2021, 159, 110739.	2.6	2
17	Controlled Synthesis of Well-Defined Polyaminoboranes on Scale Using a Robust and Efficient Catalyst. Journal of the American Chemical Society, 2021, 143, 21010-21023.	6.6	12
18	Gold Nanoparticles and Nanoshells Embedded as Core–Shell Architectures in Hybrid Poly(<scp>l</scp> -Histidine)-Containing Polymers for Photothermal Therapies. ACS Applied Nano Materials, 2021, 4, 14217-14230.	2.4	3

#	Article	IF	Citations
19	Monitoring the Effect of Transdermal Drug Delivery Patches on the Skin Using Terahertz Sensing. Pharmaceutics, 2021, 13, 2052.	2.0	5
20	Well-defined polyacrylamides with AIE properties <i>via</i> rapid Cu-mediated living radical polymerization in aqueous solution: thermoresponsive nanoparticles for bioimaging. Polymer Chemistry, 2021, 13, 58-68.	1.9	9
21	Automatic peak assignment and visualisation of copolymer mass spectrometry data using the â€~genetic algorithm'. Rapid Communications in Mass Spectrometry, 2020, 34, e8654.	0.7	7
22	Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene Microparticles. ACS Applied Polymer Materials, 2020, 2, 725-731.	2.0	22
23	UV irradiation of Cu-based complexes with aliphatic amine ligands as used in living radical polymerization. European Polymer Journal, 2020, 123, 109388.	2.6	9
24	Synthesis and [2+2]-photodimerisation of monothiomaleimide functionalised linear and brush-like polymers. Chemical Communications, 2020, 56, 9545-9548.	2.2	6
25	Aqueous copper-mediated reversible deactivation radical polymerization (RDRP) utilizing polyetheramine derived initiators. Polymer Chemistry, 2020, 11, 5534-5541.	1.9	2
26	Dihydrolevoglucosenone (Cyreneâ,,¢) as a bio-renewable solvent for Cu(0)wire-mediated reversible deactivation radical polymerization (RDRP) without external deoxygenation. Green Chemistry, 2020, 22, 5833-5837.	4.6	14
27	Branched macromonomers from catalytic chain transfer polymerisation (CCTP) as precursors for emulsion-templated porous polymers. Polymer Chemistry, 2020, 11, 3841-3848.	1.9	7
28	Rapidly self-deoxygenating controlled radical polymerization in water <i>via in situ</i> disproportionation of Cu(<scp>i</scp>). Chemical Science, 2020, 11, 5257-5266.	3.7	26
29	Aggregation-Induced Emission Active Polyacrylates via Cu-Mediated Reversible Deactivation Radical Polymerization with Bioimaging Applications. ACS Macro Letters, 2020, 9, 769-775.	2.3	17
30	Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry, 2020, 22, 4055-4081.	4.6	212
31	Protein-polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nature Communications, 2020, 11, 1486.	5.8	82
32	Determining the sequence and backbone structure of "semi-statistical―copolymers as donor–acceptor polymers in organic solar cells. Sustainable Energy and Fuels, 2020, 4, 2026-2034.	2.5	7
33	Polymerisable surfactants for polymethacrylates using catalytic chain transfer polymerisation (CCTP) combined with sulfur free-RAFT in emulsion polymerisation. European Polymer Journal, 2020, 125, 109491.	2.6	17
34	Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31302-31310.	4.0	34
35	Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polymer Chemistry, 2019, 10, 4402-4406.	1.9	25
36	A simple and versatile route to amphiphilic polymethacrylates: catalytic chain transfer polymerisation (CCTP) coupled with post-polymerisation modifications. Polymer Chemistry, 2019, 10, 646-655.	1.9	13

#	Article	IF	Citations
37	Exploiting catalytic chain transfer polymerization for the synthesis of carboxylated latexes via sulfurâ€free RAFT. Journal of Polymer Science Part A, 2019, 57, E1-E9.	2.5	18
38	Ultra-low volume oxygen tolerant photoinduced Cu-RDRP. Polymer Chemistry, 2019, 10, 963-971.	1.9	60
39	Tandem Mass Spectrometry for Polymeric Structure Analysis: A Comparison of Two Common MALDI–ToF/ToF Techniques. Macromolecular Rapid Communications, 2019, 40, 1900088.	2.0	11
40	Synthesis of glycopolymers with specificity for bacterial strains <i>via</i> bacteria-guided polymerization. Chemical Science, 2019, 10, 5251-5257.	3.7	32
41	Microscale synthesis of multiblock copolymers using ultrafast RAFT polymerisation. Polymer Chemistry, 2019, 10, 1186-1191.	1.9	25
42	Thermoresponsive viscosity of polyacrylamide block copolymers synthesised via aqueous Cu-RDRP. European Polymer Journal, 2019, 114, 326-331.	2.6	5
43	Functional Brush Poly(2â€ethylâ€2â€oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and Grafting onto Iron Oxide Nanoparticles. Macromolecular Rapid Communications, 2019, 40, e1800911.	2.0	23
44	Controlled synthesis of methacrylate and acrylate diblock copolymers via end-capping using CCTP and FRP. Polymer Chemistry, 2019, 10, 6447-6455.	1.9	12
45	Microphase separation of highly amphiphilic, low <i>N</i> polymers by photoinduced copper-mediated polymerization, achieving sub-2 nm domains at half-pitch. Polymer Chemistry, 2019, 10, 6254-6259.	1.9	20
46	Defect-related luminescent nanostructured hydroxyapatite promotes mineralization through both intracellular and extracellular pathways. RSC Advances, 2019, 9, 35939-35947.	1.7	3
47	Self-Assembling Protein–Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS Applied Materials & Interfaces, 2019, 11, 3599-3608.	4.0	21
48	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.5	81
49	Combining uretdione and disulfide reversibly degradable polyurethanes: route to alternating block copolymers. Polymer Chemistry, 2018, 9, 2611-2616.	1.9	4
50	Transdermal Delivery of Ibuprofen Utilizing a Novel Solvent-Free Pressure-sensitive Adhesive (PSA): TEPI® Technology. Journal of Pharmaceutical Innovation, 2018, 13, 48-57.	1.1	28
51	Unraveling the Spontaneous Zwitterionic Copolymerization Mechanism of Cyclic Imino Ethers and Acrylic Acid. Macromolecules, 2018, 51, 318-327.	2.2	11
52	Sequence-Controlled Methacrylic Multiblock Copolymers: Expanding the Scope of Sulfur-Free RAFT. Macromolecules, 2018, 51, 336-342.	2.2	57
53	Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polymer Chemistry, 2018, 9, 2382-2388.	1.9	43
54	Polymers for Fluorescence Imaging of Formaldehyde in Living Systems via the Hantzsch Reaction. ACS Macro Letters, 2018, 7, 1346-1352.	2.3	27

#	Article	IF	CITATIONS
55	MALDI-LID-ToF/ToF analysis of statistical and diblock polyacrylate copolymers. Polymer Chemistry, 2018, 9, 4631-4641.	1.9	22
56	Copperâ€Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angewandte Chemie, 2018, 130, 9136-9140.	1.6	25
57	Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. Polymer Chemistry, 2018, 9, 4025-4035.	1.9	29
58	Kupfervermittelte radikalische Polymerisation mit reversibler Deaktivierung in wÄßrigen Medien. Angewandte Chemie, 2018, 130, 10628-10643.	1.6	16
59	Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polymer Chemistry, 2018, 9, 4395-4403.	1.9	18
60	Copperâ€Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angewandte Chemie - International Edition, 2018, 57, 10468-10482.	7.2	70
61	Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Letters, 2018, 7, 909-915.	2.3	28
62	Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers. Biomacromolecules, 2018, 19, 2979-2990.	2.6	18
63	Copperâ€Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angewandte Chemie - International Edition, 2018, 57, 8998-9002.	7.2	91
64	Spontaneous zwitterionic copolymerisation: An undervalued and efficacious technique for the synthesis of functional degradable oligomers and polymers. Progress in Polymer Science, 2018, 87, 228-246.	11.8	17
65	Comparison of the Kinetic Hydrate Inhibition Performance of Block and Statistical <i>N</i> -Alkylacrylamide Copolymers. Energy & E	2.5	22
66	Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polymer Chemistry, 2017, 8, 1353-1363.	1.9	62
67	A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria. Journal of Controlled Release, 2017, 259, 83-91.	4.8	15
68	Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6444-6452.	4.0	15
69	Specific and Differential Binding of <i>N</i> -Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18, 1624-1633.	2.6	32
70	Practical Chainâ€End Reduction of Polymers Obtained with ATRP. Macromolecular Chemistry and Physics, 2017, 218, 1700107.	1.1	13
71	Mussel-inspired thermoresponsive polymers with a tunable LCST by Cu(0)-LRP for the construction of smart TiO ₂ nanocomposites. Polymer Chemistry, 2017, 8, 3679-3688.	1.9	13
72	Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials. RSC Advances, 2017, 7, 19674-19683.	1.7	5

#	Article	IF	CITATIONS
73	Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation. Polymer Chemistry, 2017, 8, 1084-1094.	1.9	43
74	Universal Conditions for the Controlled Polymerization of Acrylates, Methacrylates, and Styrene via Cu(0)-RDRP. Journal of the American Chemical Society, 2017, 139, 1003-1010.	6.6	93
7 5	Synthesis of polymeric microcapsules by interfacial-suspension cationic photopolymerisation of divinyl ether monomer in aqueous suspension. Polymer Chemistry, 2017, 8, 972-975.	1.9	11
76	Regenerableâ€Catalystâ€Aided, Opened to Air and Sunlightâ€Driven "CuAAC&ATRP―Concurrent Reacti for Sequenceâ€Controlled Copolymer. Macromolecular Rapid Communications, 2017, 38, 1700511.	on 2.0	7
77	Bioinspired coating of TiO ₂ nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polymer Chemistry, 2017, 8, 6570-6580.	1.9	17
78	Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN. Chemical Science, 2017, 8, 6974-6980.	3.7	31
79	Reversible surface functionalisation of emulsion-templated porous polymers using dithiophenol maleimide functional macromolecules. Chemical Communications, 2017, 53, 9789-9792.	2.2	11
80	Plasticisation and compatibilisation of poly(propylene) with poly(lauryl acrylate) surface modified MWCNTs. Polymer, 2017, 133, 89-101.	1.8	8
81	High T g poly(ester amide)s by melt polycondensation of monomers from renewable resources; citric acid, D-glucono-l´-lactone and amino acids: A DSC study. European Polymer Journal, 2017, 94, 11-19.	2.6	12
82	Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]–Colistin Prodrugs through Copper-Mediated Photoinduced Living Radical Polymerization. Bioconjugate Chemistry, 2017, 28, 1916-1924.	1.8	11
83	Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nature Chemistry, 2017, 9, 171-178.	6.6	287
84	Comb Poly(Oligo(2â€Ethylâ€2â€Oxazoline)Methacrylate)â€Peptide Conjugates Prepared by Aqueous Cu(0)â€Mediated Polymerization and Reductive Amination. Macromolecular Rapid Communications, 2017, 38, 1600534.	2.0	22
85	A Hydrogelâ€Based Localized Release of Colistin for Antimicrobial Treatment of Burn Wound Infection. Macromolecular Bioscience, 2017, 17, 1600320.	2.1	51
86	Thermal study of polyester networks based on renewable monomers citric acid and gluconolactone. Polymer International, 2017, 66, 59-63.	1.6	3
87	Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries. Materials, 2016, 9, 35.	1.3	38
88	Polyurea microcapsules from isocyanatoethyl methacrylate copolymers. Journal of Polymer Science Part A, 2016, 54, 2698-2705.	2.5	7
89	Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Macromolecular Rapid Communications, 2016, 37, 356-361.	2.0	19
90	Aqueous Copper(II) Photoinduced Polymerization of Acrylates: Low Copper Concentration and the Importance of Sodium Halide Salts. Journal of the American Chemical Society, 2016, 138, 7346-7352.	6.6	95

#	Article	IF	Citations
91	Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via Sequential Thiol Exchange Reactions. ACS Macro Letters, 2016, 5, 709-713.	2.3	16
92	Controlled aqueous polymerization of acrylamides and acrylates and "in situ―depolymerization in the presence of dissolved CO ₂ . Chemical Communications, 2016, 52, 6533-6536.	2.2	29
93	Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methods. Polymer Chemistry, 2016, 7, 3884-3896.	1.9	21
94	Stability Enhancing <i>N</i> -Terminal PEGylation of Oxytocin Exploiting Different Polymer Architectures and Conjugation Approaches. Biomacromolecules, 2016, 17, 2755-2766.	2.6	13
95	Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM). Chemical Communications, 2016, 52, 9929-9932.	2.2	26
96	Well-Defined PDMAEA Stars via Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules, 2016, 49, 8914-8924.	2.2	39
97	Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polymer Chemistry, 2016, 7, 7002-7010.	1.9	54
98	Facile one-pot/one-step synthesis of heterotelechelic N-acylated poly(aminoester) macromonomers for carboxylic acid decorated comb polymers. Polymer Chemistry, 2016, 7, 6703-6707.	1.9	14
99	Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polymer Chemistry, 2016, 7, 430-440.	1.9	74
100	Dual Stimuli-Responsive Comb Polymers from Modular <i>N</i> -Acylated Poly(aminoester)-Based Macromonomers. ACS Macro Letters, 2016, 5, 321-325.	2.3	32
101	Facile access to thermoresponsive filomicelles with tuneable cores. Chemical Communications, 2016, 52, 4497-4500.	2.2	51
102	Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polymer Chemistry, 2016, 7, 2452-2456.	1.9	23
103	Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu(0)-Mediated Reversible-Deactivation Radical Polymerization. Macromolecules, 2016, 49, 483-489.	2.2	67
104	Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polymer Chemistry, 2016, 7, 1002-1026.	1.9	119
105	Discrete copper(<scp>ii</scp>)-formate complexes as catalytic precursors for photo-induced reversible deactivation polymerization. Polymer Chemistry, 2016, 7, 191-197.	1.9	29
106	Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews, 2016, 116, 835-877.	23.0	373
107	Unprecedented Control over the Acrylate and Acrylamide Polymerization in Aqueous and Organic Media. ACS Symposium Series, 2015, , 29-45.	0.5	3
108	Feasibility of the Simultaneous Determination of Monomer Concentrations and Particle Size in Emulsion Polymerization Using in Situ Raman Spectroscopy. Industrial & Engineering Chemistry Research, 2015, 54, 12867-12876.	1.8	19

#	Article	lF	Citations
109	Polymer Chemistry: 5 years on. Polymer Chemistry, 2015, 6, 9-9.	1.9	О
110	Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Advances, 2015, 5, 5879-5885.	1.7	18
111	Synthesis of well-defined $\hat{l}\pm, \hat{l}\%$ -telechelic multiblock copolymers in aqueous medium: in situ generation of $\hat{l}\pm, \hat{l}\%$ -diols. Polymer Chemistry, 2015, 6, 2226-2233.	1.9	54
112	Templated polymerizations on solid supports mediated by complementary nucleoside interactions. Polymer Chemistry, 2015, 6, 1944-1951.	1.9	20
113	Photo-induced living radical polymerization of acrylates utilizing a discrete copper(<scp>ii</scp>)–formate complex. Chemical Communications, 2015, 51, 5626-5629.	2.2	70
114	Photoinduced Synthesis of $\hat{l}\pm, j\%$ -Telechelic Sequence-Controlled Multiblock Copolymers. Macromolecules, 2015, 48, 1404-1411.	2.2	97
115	Water soluble triblock and pentablock poly(methacryloyl nucleosides) from copper-mediated living radical polymerisation using PEG macroinitiators. European Polymer Journal, 2015, 66, 444-451.	2.6	14
116	Synthesis of Well-Defined Poly(acrylates) in Ionic Liquids via Copper(II)-Mediated Photoinduced Living Radical Polymerization. Macromolecules, 2015, 48, 5140-5147.	2.2	56
117	Emerging investigators. Polymer Chemistry, 2015, 6, 5501-5502.	1.9	0
118	Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. Journal of the American Chemical Society, 2015, 137, 9344-9353.	6.6	84
119	The effect of ligand, solvent and Cu(0) source on the efficient polymerization of polyether acrylates and methacrylates in aqueous and organic media. Polymer Chemistry, 2015, 6, 5940-5950.	1.9	26
120	Conjugation of polymers to proteins through an inhibitor-derived peptide: taking up the inhibitor "berth― Chemical Communications, 2015, 51, 10099-10102.	2.2	8
121	Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 6889-6896.	6.6	113
122	Aqueous SET-LRP catalyzed with "in situ―generated Cu(0) demonstrates surface mediated activation and bimolecular termination. Polymer Chemistry, 2015, 6, 2084-2097.	1.9	65
123	Polymerization-induced thermal self-assembly (PITSA). Chemical Science, 2015, 6, 1230-1236.	3.7	301
124	Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation. Journal of the American Chemical Society, 2015, 137, 4215-4222.	6.6	71
125	Copper(<scp>ii</scp>) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates. Polymer Chemistry, 2015, 6, 3581-3585.	1.9	56
126	In Situ Conjugation of Dithiophenol Maleimide Polymers and Oxytocin for Stable and Reversible Polymer–Peptide Conjugates. Bioconjugate Chemistry, 2015, 26, 633-638.	1.8	47

#	Article	IF	Citations
127	Novel comb polymers from alternating N-acylated poly(aminoester)s obtained by spontaneous zwitterionic copolymerisation. Chemical Communications, 2015, 51, 16213-16216.	2.2	25
128	Surface immobilization of a protease through an inhibitor-derived affinity ligand: a bioactive surface with defensive properties against an inhibitor. Chemical Communications, 2015, 51, 14263-14266.	2.2	9
129	Cu(0)-mediated living radical polymerisation in dimethyl lactamide (DML); an unusual green solvent with limited environmental impact. Polymer Chemistry, 2015, 6, 8319-8324.	1.9	19
130	David Sherrington commemorative issue. Polymer Chemistry, 2015, 6, 7228-7230.	1.9	0
131	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media. Macromolecules, 2015, 48, 5517-5525.	2.2	50
132	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media. Macromolecules, 2015, 48, 6421-6432.	2.2	49
133	Synthesis and reactivity of \hat{l}_{\pm} , \hat{l}_{\pm} %-homotelechelic polymers by Cu(0)-mediated living radical polymerization. European Polymer Journal, 2015, 62, 294-303.	2.6	36
134	Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 ${\rm \^{A}}^{\circ}{\rm C}$. Polymer Chemistry, 2015, 6, 406-417.	1.9	137
135	Sequence-Controlled Multi-Block Glycopolymers via Cu(0) Mediated Living Radical Polymerization. ACS Symposium Series, 2014, , 327-348.	0.5	4
136	Copper-mediated living radical polymerization (SET-LRP) of lipophilic monomers from multi-functional initiators: reducing star–star coupling at high molecular weights and high monomer conversions. Polymer Chemistry, 2014, 5, 892-898.	1.9	52
137	Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors. Polymer Chemistry, 2014, 5, 3053-3060.	1.9	152
138	Self-activation and activation of Cu(0) wire for SET-LRP mediated by fluorinated alcohols. Polymer Chemistry, $2014, 5, 89-95$.	1.9	54
139	Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol–halogen, thiol–epoxy and CuAAC reactions. Polymer Chemistry, 2014, 5, 3876-3883.	1.9	101
140	<i>Absolut</i> "copper catalyzation perfectedâ€, robust living polymerization of NIPAM: <i>Guinness</i> is good for SET-LRP. Polymer Chemistry, 2014, 5, 57-61.	1.9	80
141	Integrating a thermoresponsive copolymer with host–guest interactions for fabricating molecular recognition surfaces. Materials Horizons, 2014, 1, 540-545.	6.4	26
142	Glycopolymers with secondary binding motifs mimic glycan branching and display bacterial lectin selectivity in addition to affinity. Chemical Science, 2014, 5, 1611-1616.	3.7	69
143	Copper(II)/Tertiary Amine Synergy in Photoinduced Living Radical Polymerization: Accelerated Synthesis of I‰-Functional and I±,I‰-Heterofunctional Poly(acrylates). Journal of the American Chemical Society, 2014, 136, 1141-1149.	6.6	336
144	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules, 2014, 47, 4676-4683.	2.2	48

#	Article	IF	CITATIONS
145	Expanding the Scope of the Photoinduced Living Radical Polymerization of Acrylates in the Presence of CuBr ₂ and Me ₆ -Tren. Macromolecules, 2014, 47, 3852-3859.	2.2	100
146	Aqueous Copperâ€Mediated Living Radical Polymerisation of <i>N</i> à€Acryloylmorpholine, SET‣RP in Water. Macromolecular Rapid Communications, 2014, 35, 965-970.	2.0	58
147	Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chemical Science, 2014, 5, 3536-3542.	3.7	151
148	Dendritic Cell Lectin-Targeting Sentinel-like Unimolecular Glycoconjugates To Release an Anti-HIV Drug. Journal of the American Chemical Society, 2014, 136, 4325-4332.	6.6	137
149	Visible light induced fast synthesis of protein–polymer conjugates: controllable polymerization and protein activity. Chemical Communications, 2014, 50, 6506-6508.	2.2	43
150	Synthesis and Aggregation of Double Hydrophilic Diblock Glycopolymers via Aqueous SET-LRP. ACS Macro Letters, 2014, 3, 491-495.	2.3	64
151	Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chemical Science, 2014, 5, 715-726.	3.7	111
152	Positionable Vertical Microfluidic Cell Based on Electromigration in a Theta Pipet. Langmuir, 2014, 30, 10011-10018.	1.6	14
153	Poly(acrylates) via SET-LRP in a continuous tubular reactor. Polymer Chemistry, 2013, 4, 4809.	1.9	60
154	SET-LRP of methacrylates in fluorinated alcohols. Polymer Chemistry, 2013, 4, 5563.	1.9	46
155	SET-LRP of hydrophobic and hydrophilic acrylates in tetrafluoropropanol. Polymer Chemistry, 2013, 4, 5555.	1.9	52
156	Synthesis of water soluble PEGylated (copper) phthalocyanines via Mitsunobu reaction and Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) "click―chemistry. Polymer Chemistry, 2013, 4, 4405.	1.9	14
157	Copper-mediated controlled radical polymerization under biological conditions: SET-LRP in blood serum. Chemical Communications, 2013, 49, 6608.	2.2	62
158	Control the Wettability of Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -1-adamantan-1-ylmethyl) Tj ETQq0 0 0 rgB	T ₁ /Qverloc	k ₄₃ 0 Tf 50 2
159	Dual-functional materials via CCTP and selective orthogonal thiol-Michael addition/epoxide ring opening reactions. Polymer Chemistry, 2013, 4, 2608.	1.9	29
160	Poly(azlactone)s: versatile scaffolds for tandem post-polymerisation modification and glycopolymer synthesis. Polymer Chemistry, 2013, 4, 717-723.	1.9	38
161	Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. Journal of the American Chemical Society, 2013, 135, 2875-2878.	6.6	106
162	Sequenceâ€Controlled Multiâ€Block Glycopolymers to Inhibit DCâ€6IGNâ€gp120 Binding. Angewandte Chemie - International Edition, 2013, 52, 4435-4439.	7.2	218

#	Article	IF	CITATIONS
163	The importance of ligand reactions in Cu(0)-mediated living radical polymerisation of acrylates. Polymer Chemistry, 2013, 4, 2672.	1.9	68
164	Rooftop reactions. Nature Chemistry, 2013, 5, 366-368.	6.6	17
165	Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me ₆ TREN. Journal of the American Chemical Society, 2013, 135, 7355-7363.	6.6	297
166	Polymerization of long chain [meth]acrylates by Cu(0)-mediated and catalytic chain transfer polymerisation (CCTP): high fidelity end group incorporation and modification. Polymer Chemistry, 2013, 4, 4113.	1.9	45
167	Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polymer Chemistry, 2013, 4, 106-112.	1.9	75
168	High Molecular Weight Block Copolymers by Sequential Monomer Addition via Cu(0)-Mediated Living Radical Polymerization (SET-LRP): An Optimized Approach. ACS Macro Letters, 2013, 2, 896-900.	2.3	124
169	A detailed study on understanding glycopolymer library and Con A interactions. Journal of Polymer Science Part A, 2013, 51, 2588-2597.	2.5	69
170	Synthetic Glycopolypeptides as Potential Inhibitory Agents for Dendritic Cells and HIVâ€1 Trafficking. Macromolecular Rapid Communications, 2013, 34, 1542-1546.	2.0	18
171	Synthetic Glycopolymers: Some Recent Developments. Advances in Polymer Science, 2013, , 39-59.	0.4	21
172	Nucleophilic Thiolâ€alkene Michael Addition for the Functionalization of Polymers and for Bioconjugation. RSC Polymer Chemistry Series, 2013, , 95-116.	0.1	5
173	Direct Peptide Bioconjugation/PEGylation at Tyrosine with Linear and Branched Polymeric Diazonium Salts. Journal of the American Chemical Society, 2012, 134, 7406-7413.	6.6	122
174	Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups. ACS Macro Letters, 2012, 1, 222-226.	2.3	46
175	An investigation into thiol–ene surface chemistry of poly(ethylene glycol) acrylates, methacrylates and CCTP polymers via quartz crystal microbalance with dissipation monitoring (QCM-D). Soft Matter, 2012, 8, 10388.	1.2	10
176	A comparison of verdazyl radicals modified at the 3-position as mediators in the living radical polymerisation of styrene and n-butyl acrylate. Polymer Chemistry, 2012, 3, 2254.	1.9	13
177	Biological surface modification by â€~thiol-ene' addition of polymers synthesised by catalytic chain transfer polymerisation (CCTP). Polymer Chemistry, 2012, 3, 1461.	1.9	25
178	Evanescent Wave Cavity Ring-Down Spectroscopy (EW-CRDS) as a Probe of Macromolecule Adsorption Kinetics at Functionalized Interfaces. Langmuir, 2012, 28, 6902-6910.	1.6	7
179	Effects of Trehalose Polycation End-Group Functionalization on Plasmid DNA Uptake and Transfection. Biomacromolecules, 2012, 13, 2229-2239.	2.6	20
180	Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization. Chemical Communications, 2012, 48, 8063.	2.2	76

#	Article	IF	Citations
181	Adsorption behaviour of sulfur containing polymers to gold surfaces using QCM-D. Soft Matter, 2012, 8, 118-128.	1.2	65
182	Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chemical Communications, 2012, 48, 4064.	2.2	58
183	Controlled Alternate Layer-by-Layer Assembly of Lectins and Glycopolymers Using QCM-D. ACS Macro Letters, 2012, 1, 180-183.	2.3	37
184	Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. Journal of the American Chemical Society, 2012, 134, 1847-1852.	6.6	143
185	Synthesis and SEC Characterization of Poly(methyl methacrylate) Star Polymers. ACS Symposium Series, 2012, , 81-98.	0.5	1
186	Terminal functional glycopolymers via a combination of catalytic chain transfer polymerisation (CCTP) followed by three consecutive click reactions. Polymer Chemistry, 2012, 3, 1016.	1.9	50
187	Investigation of glycopolymer–lectin interactions using QCM-d: comparison of surface binding with inhibitory activity. Polymer Chemistry, 2012, 3, 1634.	1.9	25
188	Probing Bacterialâ€Toxin Inhibition with Synthetic Glycopolymers Prepared by Tandem Postâ€Polymerization Modification: Role of Linker Length and Carbohydrate Density. Angewandte Chemie - International Edition, 2012, 51, 7812-7816.	7.2	119
189	PEGylation of surface protein filaments: coverage and impact on denaturation. RSC Advances, 2011, 1, 58.	1.7	4
190	Mechanically Facilitated Retro $[4+2]$ Cycloadditions. Journal of the American Chemical Society, 2011, 133, 7180-7189.	6.6	78
191	Combining catalytic chain transfer polymerisation (CCTP) and thio-Michael addition: enabling the synthesis of peripherally functionalised branched polymers. Polymer Chemistry, 2011, 2, 1992.	1.9	21
192	Synthesis of microcapsules via reactive surfactants. Soft Matter, 2011, 7, 5408.	1.2	9
193	Optimised â€~click' synthesis of glycopolymers with mono/di- and trisaccharides. Polymer Chemistry, 2011, 2, 107-113.	1.9	61
194	Organocatalytic synthesis of astaxanthin-containing poly(lactide)s. Polymer Chemistry, 2011, 2, 595-600.	1.9	18
195	Tunable thermo-responsive polymer–protein conjugates via a combination of nucleophilic thiol–ene "click―and SET-LRP. Polymer Chemistry, 2011, 2, 572-574.	1.9	83
196	Synthesis and modification of thermoresponsive poly(oligo(ethylene glycol) methacrylate) via catalytic chain transfer polymerization and thiol–ene Michael addition. Polymer Chemistry, 2011, 2, 815.	1.9	93
197			

#	Article	IF	Citations
199	Optimizing the generation of narrow polydispersity â€~arm-first' star polymers made using RAFT polymerization. Polymer Chemistry, 2011, 2, 1671.	1.9	111
200	PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights. Journal of Controlled Release, 2011, 149, 126-132.	4.8	25
201	Biotin functionalized poly(sulfonic acid)s for bioconjugation: ⟨i⟩In situ⟨/i⟩ binding monitoring by QCMâ€D. Journal of Polymer Science Part A, 2011, 49, 1163-1173.	2.5	5
202	Cu(0) mediated polymerization in toluene using online rapid GPC monitoring. Journal of Polymer Science Part A, 2011, 49, 1753-1763.	2.5	56
203	Synthesis of glycopolymers via click reactions. European Polymer Journal, 2011, 47, 435-446.	2.6	169
204	High fidelity vinyl terminated polymers by combining RAFT and cobalt catalytic chain transfer (CCT) polymerization methods. Chemical Communications, 2010, 46, 6338.	2.2	36
205	Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polymer Chemistry, 2010, 1, 1196.	1.9	228
206	Self-healing polymers prepared via living radical polymerisation. Polymer Chemistry, 2010, 1, 102.	1.9	143
207	Assessment of SET-LRP in DMSO using online monitoring and Rapid GPC. Polymer Chemistry, 2010, 1, 1086.	1.9	85
208	Synthesis and evaluation of partly fluorinated polyelectrolytes as components in 19F MRI-detectable nanoparticles. Polymer Chemistry, 2010, 1, 1039.	1.9	45
209	Antibacterial Effects of Poly(2-(dimethylamino ethyl)methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria. Biomacromolecules, 2010, 11, 443-453.	2.6	208
210	Self-healing and self-mendable polymers. Polymer Chemistry, 2010, 1, 978.	1.9	367
211	Modification of Thiol Functionalized Aptamers by Conjugation of Synthetic Polymers. Bioconjugate Chemistry, 2010, 21, 169-174.	1.8	42
212	High-Affinity Glycopolymer Binding to Human DC-SIGN and Disruption of DC-SIGN Interactions with HIV Envelope Glycoprotein. Journal of the American Chemical Society, 2010, 132, 15130-15132.	6.6	180
213	Polymer Chemistry. Polymer Chemistry, 2010, 1, 13.	1.9	2
214	A facile route to end-functionalised polymers synthesised by SET-LRP via a one-pot reduction/thiol-ene Michael-type addition. Chemical Communications, 2010, 46, 7181.	2.2	29
215	Dexamethasone–pDMAEMA polymeric conjugates reduce inflammatory biomarkers in human intestinal epithelial monolayers. Journal of Controlled Release, 2009, 135, 35-43.	4.8	44
216	Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol)) Tj ETQq0 0	0 rgBT /0 4.8	verlock 10 Tf 78

135, 51-59.

#	Article	IF	CITATIONS
217	Site-specific N-terminus conjugation of poly(mPEG1100) methacrylates to salmon calcitonin: synthesis and preliminary biological evaluation. Soft Matter, 2009, 5, 3038.	1.2	26
218	Phosphine-mediated one-pot thiol–ene "click―approach to polymer–protein conjugates. Chemical Communications, 2009, , 5272.	2.2	110
219	Glycopolymers via catalytic chain transfer polymerisation (CCTP), Huisgens cycloaddition and thiol–ene double click reactions. Chemical Communications, 2009, , 2727.	2.2	136
220	A Tertiary Amino-Containing Polymethacrylate Polymer Protects Mucus-Covered Intestinal Epithelial Monolayers Against Pathogenic Challenge. Pharmaceutical Research, 2008, 25, 1193-1201.	1.7	16
221	Synthesis of poly(di[methylamine]ethyl methacrylate)â€ <i>b</i> à€poly(cyclohexyl) Tj ETQq1 1 0.784314 rgBT /0 ATRP: Condensedâ€phase and solution properties. Journal of Polymer Science Part A, 2008, 46, 85-92.	Overlock 1 2.5	10 Tf 50 587 9
222	Polymerization of methyl acrylate mediated by copper(0)/Me ₆ ‶REN in hydrophobic media enhanced by phenols; Single electron transferâ€living radical polymerization. Journal of Polymer Science Part A, 2008, 46, 7376-7385.	2.5	93
223	Synthesis, characterization, and bulk properties of amphiphilic copolymers containing fluorinated methacrylates from sequential copperâ€mediated radical polymerization. Journal of Polymer Science Part A, 2008, 46, 8097-8111.	2.5	46
224	Thermal and Morphological Behaviour of Wellâ€Defined Amphiphilic Triblock Copolymers Based on Cyclohexyl and Di(ethylene glycol) Methyl Ether Methacrylates. Macromolecular Chemistry and Physics, 2008, 209, 184-194.	1.1	2
225	Simultaneous Copper(I) atalyzed Azide–Alkyne Cycloaddition (CuAAC) and Living Radical Polymerization. Angewandte Chemie - International Edition, 2008, 47, 4180-4183.	7.2	144
226	Biodegradable and thermoresponsive micelles of triblock copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and Îμ-caprolactone for controlled drug delivery. European Polymer Journal, 2008, 44, 3853-3863.	2.6	62
227	Fluorescently Labeled Protein-Polymer Bioconjugates Using Protein-Derived Macroinitiators from Living Radical Polymerization. ACS Symposium Series, 2008, , 78-94.	0.5	4
228	Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opinion on Drug Delivery, 2008, 5, 371-383.	2.4	283
229	Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes. Chemical Communications, 2008, , 1097.	2.2	49
230	Site-Directed Conjugation of "Clicked―Glycopolymers To Form Glycoprotein Mimics:  Binding to Mammalian Lectin and Induction of Immunological Function. Journal of the American Chemical Society, 2007, 129, 15156-15163.	6.6	281
231	Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry― Soft Matter, 2007, 3, 732-739.	1.2	96
232	Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter, 2007, 3, 725-731.	1.2	51
233	Bioconjugation onto biological surfaces with fluorescently labeled polymers. Chemical Communications, 2007, , 1722.	2.2	35
234	Bioconjugation of biotinylated PAMAM dendrons to avidin. Chemical Communications, 2007, , 3441.	2.2	26

#	Article	IF	CITATIONS
235	Synthesis of graft copolymers from \hat{l}_{\pm} -oxanorbornenyl macromonomers. New Journal of Chemistry, 2007, 31, 1826.	1.4	33
236	2,6-Bis(oxazolinyl)phenylnickel(II) Bromide and 2,6-Bis(ketimine)phenylnickel(II) Bromide:  Synthesis, Structural Features, and Redox Properties. Organometallics, 2007, 26, 3985-3994.	1.1	69
237	A Modular Click Approach to Glycosylated Polymeric Beads:  Design, Synthesis and Preliminary Lectin Recognition Studies. Macromolecules, 2007, 40, 7513-7520.	2.2	93
238	Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates. Journal of Materials Chemistry, 2007, 17, 1916-1922.	6.7	77
239	Living Radical Polymerization as a Tool for the Synthesis of Polymer-Protein/Peptide Bioconjugates. Macromolecular Rapid Communications, 2007, 28, 1083-1111.	2.0	305
240	Continuous process for ATRP: Synthesis of homo and block copolymers. European Polymer Journal, 2007, 43, 2321-2330.	2.6	66
241	Aggregation and solubilization of organic solvents and petrol/gasoline in water mediated by block copolymers. European Polymer Journal, 2007, 43, 4583-4592.	2.6	6
242	Fluorinated bioâ€acceptable polymers via an ATRP macroinitiator approach. Journal of Polymer Science Part A, 2007, 45, 5770-5780.	2.5	31
243	Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: Synthesis and metal templating. Chemical Communications, 2006, , 4949.	2.2	54
244	Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chemical Communications, 2006, , 4697.	2.2	129
245	Amide Functional Initiators for Transition-Metal-Mediated Living Radical Polymerization. Macromolecules, 2006, 39, 1353-1358.	2.2	57
246	Well-Defined Azlactone-Functionalized (Co)polymers on a Solid Support:Â Synthesis via Supported Living Radical Polymerization and Application as Nucleophile Scavengers. ACS Combinatorial Science, 2006, 8, 522-530.	3.3	47
247	Synthesis of Neoglycopolymers by a Combination of "Click Chemistry―and Living Radical Polymerization. Journal of the American Chemical Society, 2006, 128, 4823-4830.	6.6	550
248	Reverse atom transfer radical polymerisation (RATRP) of methacrylates using copper(I)/pyridinimine catalysts in conjunction with AIBN. European Polymer Journal, 2006, 42, 61-68.	2.6	19
249	Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. Reactive and Functional Polymers, 2006, 66, 51-64.	2.0	59
250	Living radical polymerisation in heterogeneous conditions—suspension polymerisation. European Polymer Journal, 2005, 41, 805-816.	2.6	23
251	Reactivity ratios in conventional and nickel-mediated radical copolymerization of methyl methacrylate and functionalized methacrylate monomers. European Polymer Journal, 2005, 41, 2255-2263.	2.6	29
252	Synthesis of star-shaped metallo-polymeric chromophores by atom transfer radical polymerization. Comptes Rendus Chimie, 2005, 8, 1298-1307.	0.2	13

#	Article	IF	CITATIONS
253	A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nature Chemical Biology, 2005, 1, 270-274.	3.9	66
254	PEG shielded polymeric double-layered micelles for gene delivery. Journal of Controlled Release, 2005, 102, 711-724.	4.8	59
255	Patterning through Controlled Submolecular Motion: Rotaxane-Based Switches and Logic Gates that Function in Solution and Polymer Films. Angewandte Chemie - International Edition, 2005, 44, 3062-3067.	7.2	210
256	α-Functional glycopolymers: New materials for (poly)peptide conjugation. Polymer, 2005, 46, 8536-8545.	1.8	47
257	In Vitro and ex Vivo Intestinal Tissue Models to Measure Mucoadhesion of Poly (Methacrylate) and N-Trimethylated Chitosan Polymers. Pharmaceutical Research, 2005, 22, 38-49.	1.7	89
258	Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: Â A Suitable Alternative to PEGylation Chemistry. Journal of the American Chemical Society, 2005, 127, 2966-2973.	6.6	385
259	One-pot tandem living radical polymerisation–Huisgens cycloaddition process ("clickâ€) catalysed by N-alkyl-2-pyridylmethanimine/Cu(i)Br complexes. Chemical Communications, 2005, , 2089-2091.	2.2	191
260	Transition Metal Mediated Living Radical Polymerisation. Progress in Reaction Kinetics and Mechanism, 2004, 29, 187-241.	1.1	25
261	In situ Fourier transform near infrared spectroscopy monitoring of copper mediated living radical polymerization. Journal of Polymer Science Part A, 2004, 42, 4933-4940.	2.5	37
262	Effect of DMSO used as solvent in copper mediated living radical polymerization. Journal of Polymer Science Part A, 2004, 42, 6299-6308.	2.5	85
263	Synthetic Glycopolymers. ChemInform, 2004, 35, no.	0.1	0
264	Synthesis of precursors of poly(acryl amides) by copper mediated living radical polymerization in DMSO. European Polymer Journal, 2004, 40, 37-45.	2.6	47
265	A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. European Polymer Journal, 2004, 40, 641-645.	2.6	66
266	Synthetic glycopolymers: an overview. European Polymer Journal, 2004, 40, 431-449.	2.6	423
267	Initiating efficiency of poly(ethylene glycol)-based initiators for transition metal mediated living radical polymerisation. European Polymer Journal, 2004, 40, 2277-2286.	2.6	12
268	Olefin Copolymerization via Controlled Radical Polymerization: Copolymerization of Acrylate and 1-Octene. Macromolecules, 2004, 37, 4406-4416.	2.2	71
269	î±-Aldehyde Terminally Functional Methacrylic Polymers from Living Radical Polymerization: Application in Protein Conjugation "Pegylation― Journal of the American Chemical Society, 2004, 126, 13220-13221.	6.6	222
270	A new approach to bioconjugates for proteins and peptides ("pegylationâ€) utilising living radical polymerisation. Chemical Communications, 2004, , 2026-2027.	2.2	138

#	Article	IF	CITATIONS
271	Mechanistic Aspects of Copper-Mediated Living Radical Polymerization. ACS Symposium Series, 2003, , 148-160.	0.5	10
272	New Star-Shaped Metallo-Polymeric Chromophores. Macromolecular Rapid Communications, 2003, 24, 630-635.	2.0	29
273	Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization. European Polymer Journal, 2003, 39, 5-13.	2.6	40
274	Reversible addition–fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. European Polymer Journal, 2003, 39, 417-422.	2.6	68
275	Synthesis and characterization of amphiphilic triblock polymers by copper mediated living radical polymerization. European Polymer Journal, 2003, 39, 633-639.	2.6	48
276	Synthesis of ABABA pentablock copolymers via copper mediated living radical polymerisation. European Polymer Journal, 2003, 39, 855-862.	2.6	27
277	Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands. European Polymer Journal, 2003, 39, 2099-2105.	2.6	51
278	Synthesis and preliminary studies on a novel class of soluble amino alcohol reagents based on methacrylate copolymers. Tetrahedron, 2003, 59, 5823-5830.	1.0	2
279	Investigation of the effects of various parameters on the synthesis of oligopeptides in aqueous solution. European Polymer Journal, 2003, 39, 1559-1565.	2.6	9
280	Synthesis and properties of amphiphilic vinyl acetate triblock copolymers prepared by copper mediated living radical polymerisation. European Polymer Journal, 2003, 39, 2243-2252.	2.6	24
281	Preparation of Fluorinated Copolymers by Copper-Mediated Living Radical Polymerization. Macromolecules, 2003, 36, 9042-9049.	2.2	52
282	Synthesis of functional polymers by living radical polymerisation. Journal of Materials Chemistry, 2003, 13, 2689-2695.	6.7	43
283	Pulsed Laser Polymerization in an Ionic Liquid:Â Strong Solvent Effects on Propagation and Termination of Methyl Methacrylate. Macromolecules, 2003, 36, 5072-5075.	2.2	158
284	Surfactant Properties of Poly(dimethylsiloxane)-Containing Block Copolymers from Living Radical Polymerization. ACS Symposium Series, 2003, , 260-272.	0.5	1
285	Copper mediated living radical polymerisation: interactions between monomer and catalyst. Dalton Transactions, 2003, , 4175-4180.	1.6	44
286	Sugar-Coated Amphiphilic Block Copolymer Micelles from Living Radical Polymerization:Â Recognition by Immobilized Lectins. Macromolecules, 2003, 36, 2493-2499.	2.2	91
287	In Situ NMR Monitoring of Living Radical Polymerization. , 2003, , 125-146.		5
288	Effect of water on copper mediated living radical polymerization. Macromolecular Symposia, 2002, 182, 261-272.	0.4	45

#	Article	IF	CITATIONS
289	Living Radical Polymerization of Styrene Mediated by Copper(I)/N-n-Alkyl-2-pyridylmethanimine Catalysts. Macromolecules, 2002, 35, 2941-2948.	2.2	19
290	Synthesis of Hydrophilic Polar Supports Based on Poly(dimethylacrylamide) via Copper-Mediated Radical Polymerization from a Cross-Linked Polystyrene Surface:Â Potential Resins for Oligopeptide Solid-Phase Synthesis. Macromolecules, 2002, 35, 3849-3855.	2.2	36
291	Unprecedented solvent-induced acceleration of free-radical propagation of methyl methacrylate in ionic liquidsElectronic supplementary information (ESI) available: Sample PLP-GPC traces and full experimental data. See http://www.rsc.org/suppdata/cc/b2/b209479g/. Chemical Communications, 2002, , 2850-2851.	2.2	136
292	Interfacing supramolecular and macromolecular chemistry: metallo-supramolecular triple-helicates incorporated into polymer networksElectronic supplementary information (ESI) available: synthetic details for the compounds described and the polymerisation experiments. See http://www.rsc.org/suppdata/cc/b2/b210019c/. Chemical Communications, 2002, , 3040-3041.	2.2	9
293	First report of reversible addition–fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids. Chemical Communications, 2002, , 2226-2227.	2.2	126
294	Amphiphilic diblock, triblock, and star block copolymers by living radical polymerization: Synthesis and aggregation behavior. Journal of Polymer Science Part A, 2002, 40, 439-450.	2.5	129
295	Architecture-driven thermodynamic interactions in blends of star-branched and linear poly(methyl) Tj ETQq1 1 C	.784314 r 2.4	gBT/Overlock
296	Preparation of fluorinated methacrylic copolymers by copper mediated living radical polymerization. Tetrahedron, 2002, 58, 4053-4059.	1.0	49
297	Unexpected Viability of Pyridyl Methanimine-Based Ligands for Transition-Metal-Mediated Living Radical Polymerization in Aqueous Media at Ambient Temperature. Macromolecules, 2001, 34, 162-164.	2.2	53
298	A Nonisocyanate Route to Monodisperse Branched Polyurethanes. Journal of Organic Chemistry, 2001, 66, 8687-8689.	1.7	21
299	Living Radical Polymerization Immobilized on Wang Resins:Â Synthesis and Harvest of Narrow Polydispersity Poly(methacrylate)s. Macromolecules, 2001, 34, 768-774.	2.2	102
300	Advances in catalytic chain transfer polymerisation mediated by cobaloximes. Macromolecular Symposia, 2001, 165, 29-42.	0.4	29
301	Ligand electronic effects on rates of copper mediated atom transfer radical cyclisation and polymerisation. Tetrahedron Letters, 2001, 42, 2003-2005.	0.7	29
302	Copper(I)-mediated radical polymerization of methacrylates in aqueous solution. Journal of Polymer Science Part A, 2001, 39, 1696-1707.	2.5	91
303	Synthesis and properties of polydimethylsiloxane-containing block copolymers via living radical polymerization. Journal of Polymer Science Part A, 2001, 39, 1833-1842.	2.5	77
304	Synthesis of well-defined cyclodextrin-core star polymers. Journal of Polymer Science Part A, 2001, 39, 2206-2214.	2.5	149
305	Cobalt-mediated catalytic chain-transfer polymerization (CCTP) in water and water/alcohol solution. Journal of Polymer Science Part A, 2001, 39, 2378-2384.	2.5	43
306	Synthesis of well-defined cyclodextrin-core star polymers. , 2001, 39, 2206.		3

#	Article	IF	Citations
307	Living polymerization: Rationale for uniform terminology. , 2000, 38, 1706-1708.		97
308	Living polymerization: Rationale for uniform terminology. Journal of Polymer Science Part A, 2000, 38, 1709-1709.	2.5	12
309	Modification of the ?-bromo end group of poly(methacrylate)s prepared by copper(I)-mediated living radical polymerization. Journal of Polymer Science Part A, 2000, 38, 2678-2686.	2.5	49
310	Novel polymers from atom transfer polymerisation mediated by copper(I) Schiff base complexes. Macromolecular Symposia, 2000, 157, 201-208.	0.4	14
311	Copper-Mediated Living Radical Polymerization Utilizing Biological and End Group Modified Poly(ethylene-co-butylene) Macroinitiators. ACS Symposium Series, 2000, , 182-196.	0.5	2
312	Water-Soluble and Water Dispersible Polymers by Living Radical Polymerisation. ACS Symposium Series, 2000, , 148-161.	0.5	2
313	Well-Defined Oligosaccharide-Terminated Polymers from Living Radical Polymerization. Biomacromolecules, 2000, 1, 152-156.	2.6	116
314	Copper(i) mediated living radical polymerisation in an ionic liquid. Chemical Communications, 2000, , 1237-1238.	2.2	298
315	Copper(I) Bromide/N-(n-Octyl)-2-pyridylmethanimineâ^'Mediated Living-Radical Polymerization of Methyl Methacrylate Using Carbosilane Dendritic Initiators. Macromolecules, 2000, 33, 4048-4052.	2.2	67
316	Copper(i) mediated radical polymerisation of uridine and adenosine monomers on a silica support. Chemical Communications, 2000, , 2083-2084.	2.2	32
317	Copper(I)-Mediated Living Radical Polymerization under Fluorous Biphasic Conditions. Journal of the American Chemical Society, 2000, 122, 1542-1543.	6.6	106
318	Copper(I)-Mediated Living Radical Polymerization in the Presence of Oxyethylene Groups:Â Online1H NMR Spectroscopy To Investigate Solvent Effects. Macromolecules, 2000, 33, 8246-8251.	2.2	109
319	Use of Methyl 2-(Bromomethyl)acrylate as a Chain-Transfer Agent To Yield Functionalized Macromonomers via Conventional and Living Radical Polymerizations. Macromolecules, 2000, 33, 5819-5824.	2.2	38
320	Atom transfer polymerisation of methyl methacrylate mediated by solid supported copper catalysts. Chemical Communications, 1999, , 99-100.	2.2	85
321	Spectroscopic, physical and product studies of the thermal degradation of poly(ethylene glycol) containing a 1,3-disubstituted phenolic group. Polymer Degradation and Stability, 1999, 64, 329-338.	2.7	9
322	N-alkyl-2-pyridylmethanimines as tuneable alternatives to bipyridine ligands in copper mediated atom transfer radical cyclisation. Tetrahedron Letters, 1999, 40, 3807-3810.	0.7	54
323	The effect of feed conditions in the emulsion catalytic chain transfer polymerization of alkyl methacrylates. Journal of Polymer Science Part A, 1999, 37, 3549-3557.	2.5	26
324	3-Aminopropyl Silica Supported Living Radical Polymerization of Methyl Methacrylate:Â Dichlorotris(triphenylphosphine)ruthenium(II) Mediated Atom Transfer Polymerization. Macromolecules, 1999, 32, 4769-4775.	2.2	93

#	Article	IF	CITATIONS
325	Hydrogen Bond Template-Directed Polymerization of Protected 5â€~-Acryloylnucleosides. Macromolecules, 1999, 32, 6560-6564.	2.2	68
326	Atom Transfer Polymerization:Â Use of Uridine and Adenosine Derivatized Monomers and Initiators. Macromolecules, 1999, 32, 8725-8731.	2.2	75
327	Atom transfer polymerisation with glucose and cholesterol derived initiators. New Journal of Chemistry, 1999, 23, 477-479.	1.4	69
328	Phenolic Ester-Based Initiators for Transition Metal Mediated Living Polymerization. Macromolecules, 1999, 32, 8732-8739.	2.2	124
329	Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution. Macromolecules, 1999, 32, 2110-2119.	2.2	312
330	Determination of End Groups of Synthetic Polymers by Matrix-Assisted Laser Desorption/Ionization:Â High-Energy Collision-Induced Dissociation. Analytical Chemistry, 1999, 71, 3637-3641.	3.2	40
331	Solid-Supported Catalysts for Atom-Transfer Radical Cyclization of 2-Haloacetamides. Journal of Organic Chemistry, 1999, 64, 8954-8957.	1.7	55
332	[N-Alkyl-(2-pyridyl)methanimine]copper(I) Complexes: Characterisation and Application as Catalysts for Atom-Transfer Polymerisation. European Journal of Inorganic Chemistry, 1998, 1998, 1799-1806.	1.0	45
333	$\hat{l}_{\pm,}$ i‰-dicarboxyl telechelic poly(methyl methacrylate) via radical addition-fragmentation polymerization. Polymer, 1998, 39, 3119-3128.	1.8	36
334	Investigation of Methyl Methacrylate and Vinyl Acetate Polymerization Promoted by Al(iBu)3/2,2â€⁻-Bipyridine and Al(iBu)3/2,2â€⁻-Bipyridine/TEMPO Complexes. Macromolecules, 1998, 31, 7133-71-	4 1 :2	27
335	Atom transfer polymerisation of methyl methacrylate: use of chiral aryl/alkyl pyridylmethanimine ligands; with copper(I) bromide and as structurally characterised chiral copper(I) complexes. Journal of Materials Chemistry, 1998, 8, 1525-1532.	6.7	43
336	Halogen exchange during atom transfer polymerisation of methyl methacrylate mediated by copper(i) N-alkyl-2-pyridylmethanimine complexes. Chemical Communications, 1998, , 1719-1720.	2.2	20
337	First structurally authenticated inorganic polymers of CuBr and CuI containing chiral bidentate N-donor ligands. Use of the Schiff base 2,2′-bis[(4S)-4-benzyl-2-oxazoline] as ligand. New Journal of Chemistry, 1998, 22, 315-318.	1.4	15
338	Low-Temperature Living "Radical―Polymerization (Atom Transfer Polymerization) of Methyl Methacrylate Mediated by Copper(I)N-Alkyl-2-Pyridylmethanimine Complexes. Macromolecules, 1998, 31, 5201-5205.	2.2	106
339	Atom Transfer Polymerization of Methyl Methacrylate. Effect of Acids and Effect with 2-Bromo-2-Methylpropionic Acid Initiation. Macromolecules, 1998, 31, 2016-2018.	2.2	83
340	Atom Transfer Radical Polymerization of Methyl Methacrylate: Effect of Phenols. ACS Symposium Series, 1998, , 284-295.	0.5	10
341	Copper diimine complexes: the synthesis and crystal structures of [Cu(C10H14N2)2(MeOH)][BF4], [Cu(C10H2ON2)2]Br, [{(C10H14N2)CuBr(μ-OMe)}2(MeOH)] and [{(C10H2ON2)CuBr(μ-OMe)}2]. Journal of t Chemical Society Dalton Transactions, 1998, , 381-386.	h e. 1	16
342	Synthesis of homo―amd block copolymer multiâ€armed methacrylic star polymers by triisobutylaluminium/ <i>tert</i> à€butlyllithium initiation. Macromolecular Symposia, 1998, 132, 187-196.	0.4	1

#	Article	IF	Citations
343	Monohydroxy terminally functionalised poly(methyl methacrylate) from atom transfer radical polymerisation. Chemical Communications, 1997, , 683-684.	2.2	102
344	Atom transfer radical polymerisation (ATRP) of methyl methacrylate in the presence of radical inhibitors. Chemical Communications, 1997, , 1173-1174.	2.2	79
345	Evaluation of the Mode of Termination for a Thermally Initiated Free-Radical Polymerization via Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Macromolecules, 1997, 30, 1915-1920.	2.2	113
346	Identifying the Nature of the Active Species in the Polymerization of Methacrylates:  Inhibition of Methyl Methacrylate Homopolymerizations and Reactivity Ratios for Copolymerization of Methyl Methacrylate/n-Butyl Methacrylate in Classical Anionic, Alkyllithium/Trialkylaluminum-Initiated, Group Transfer Polymerization, Atom Transfer Radical Polymerization, Catalytic Chain Transfer, and	2,2	132
347	Classical Free Radical Polymerization. Macromolecules, 1997, 30, 3992-3998. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes. Macromolecules, 1997, 30, 2190-2193.	2.2	392
348	Homopolymerizations of Methyl Methacrylate and Styrene:  Chain Transfer Constants from the Mayo Equation and Number Distributions for Catalytic Chain Transfer, and the Chain Length Dependence of the Average Termination Rate Coefficient. Macromolecules, 1997, 30, 702-713.	2.2	78
349	Radical-addition-fragmentation and co-polymerization of methyl methacrylate macromonomers from catalytic chain transfer polymerization (CCTP). Polymer, 1997, 38, 6207-6217.	1.8	39
350	Synthesis of methacrylic multi-arm star copolymers by "arm-first―group transfer polymerisation. Macromolecular Chemistry and Physics, 1997, 198, 871-881.	1.1	37
351	Catalytic chain transfer for molecular weight control in the emulsion homo- and copolymerizations of methyl methacrylate and butyl methacrylate. Journal of Polymer Science Part A, 1997, 35, 859-878.	2.5	48
352	A Study of Cation Attachment to Polystyrene by Means of Matrix-assisted Laser Desorption/Ionization and Electrospray Ionization-Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 57-62.	0.7	107
353	Improved Reproducibility and Increased Signal Intensity in Matrix-assisted Laser Desorption/Ionization as a Result of Electrospray Sample Preparation. Rapid Communications in Mass Spectrometry, 1997, 11, 209-213.	0.7	127
354	Catalytic Chain Transfer for Molecular Weight Control in the Emulsion Polymerization of Methyl Methacrylate and Methyl Methacrylatea^'Styrene. Macromolecules, 1996, 29, 8083-8091.	2.2	74
355	Competition between \hat{l}^2 -Scission of Macromonomer-Ended Radicals and Chain Transfer to Cobalt(II) in Catalytic Chain Transfer Polymerization (CCTP). Macromolecules, 1996, 29, 481-483.	2.2	55
356	Synthesis and Mechanism of Formation of Syndiotactic Polystyrene Using a (tert-Butylcyclopentadienyl)titanium Complex. Macromolecules, 1996, 29, 6399-6403.	2.2	35
357	Determination of the Propagation Rate Coefficient (kp) and Termination Mode in the Free-Radical Polymerization of Methyl Methacrylate, Employing Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Molecular Weight Distribution Analysis. Macromolecules, 1996, 29, 492-494.	2.2	41
358	MALDI-TOF Mass Spectrometry in the Study of Statistical Copolymerizations and Its Application in Examining the Free Radical Copolymerization of Methyl Methacrylate and Butyl Methacrylate. Macromolecules, 1996, 29, 8642-8649.	2.2	44
359	Mass Discrimination Effects in an Ion Detector and Other Causes for Shifts in Polymer Mass Distributions Measured by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Macromolecules, 1996, 29, 8875-8882.	2.2	97
360	Effect of the nature of the alkyl group on initiation and termination in R ₃ Al/RLi initiation of methyl methacrylate. Macromolecular Symposia, 1996, 107, 177-188.	0.4	2

#	Article	IF	CITATIONS
361	Catalytic chain transfer polymerisation (cctp) of methyl methacrylate: Effect of catalyst structure and reaction conditions on chain transfer coefficient. Macromolecular Symposia, 1996, 111, 37-46.	0.4	34
362	$\hat{l}\pm, \hat{l}$ %-Dihydroxy telechelic poly(methyl methacrylate) via \hat{l}^2 -scission (radical addition-fragmentation) chain transfer polymerisation by macromonomer chain transfer agents, as prepared by catalytic chain transfer polymerisation. Macromolecular Chemistry and Physics, 1996, 197, 3027-3042.	1.1	27
363	Electrospray Ionization Mass Spectrometry of Poly(styrene). Rapid Communications in Mass Spectrometry, 1996, 10, 509-514.	0.7	35
364	A comparison between matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and size exclusion chromatography in the mass characterisation of synthetic polymers with narrow molecular-mass distributions: Poly(methyl methacrylate) and poly(styrene). European Journal of Mass Spectrometry, 1995, 1, 293.	0.7	102
365	Synthesis of homopolymers and block copolymers of methacrylates using a mixed Al/Li alkyl initiator. Macromolecular Symposia, 1995, 91, 93-105.	0.4	10
366	Polymerisation of methyl methacrylate with tert-butyllithium and triisobutylaluminium in toluene: mechanism of initiation and termination by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS). Macromolecular Rapid Communications, 1995, 16, 725-732.	2.0	17
367	Syntheses and structures of nickel(0) complexes containing the methyl methacrylate monomer as ligand. Journal of the Chemical Society Dalton Transactions, 1995, , 2033.	1.1	9
368	Polymethylmethacrylate end-group analysis by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). Journal of the Chemical Society Chemical Communications, 1995, , 561.	2.0	32
369	Recent developments in radical polymerization. , 1995, , 1-36.		3
370	Controlled Polymerization of Acrylates and Methacrylates ¹ . Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1994, 34, 243-324.	2.2	156
371	Characterisation of aromatic polyester dendrimers by matrix-assisted laser desorption ionisation mass spectrometry. Journal of the Chemical Society Chemical Communications, 1994, , 2445.	2.0	35
372	Controlled polymerization of methyl methacrylate using lithium aluminum alkyls. Macromolecules, 1992, 25, 5907-5913.	2.2	122
373	Transient photochemistry of (î·5-cyclopentadienyl)bis(ethene)rhodium. Journal of the Chemical Society Chemical Communications, 1987, , 1347-1349.	2.0	15
374	Photochemical activation of ethene C–H bonds of (η5-C5H5)lr(C2H4)2in low-temperature matrices and in solution. Journal of the Chemical Society Chemical Communications, 1986, , 1734-1736.	2.0	25
375	Photochemical generation and reactions of rhodium (\hat{l} -5-cyclopentadienyl) (ethene) (dinitrogen) in liquid xenon. Journal of Organometallic Chemistry, 1986, 311, C15-C20.	0.8	13
376	Cî—,H and Siî—,H activation reactions of (η5-C5H5)Rh(C2H4)CO in low-temperature matrices and in solution. Journal of Organometallic Chemistry, 1986, 311, C21-C26.	0.8	17
377	Solution and matrix photochemistry of (Î-cyclopentadienyl)bis(ethane)rhodium. Journal of the Chemical Society Chemical Communications, 1985, , 1372-1374.	2.0	22
378	Polymer Synthesis in Ionic Liquids. , 0, , 319-335.		6

#	Article	IF	CITATIONS
379	Experimental Procedures and Techniques for Radical Polymerization. , 0, , 845-893.		1
380	Polymer Synthesis in Ionic Liquids. , 0, , 619-640.		5