List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771708/publications.pdf Version: 2024-02-01

		8181	2747
204	37,783	76	192
papers	citations	h-index	g-index
212	212	212	28218
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells. Emergent Materials, 2022, 5, 967-975.	5.7	11
2	A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells: The more fluorination the better?. Journal of Energy Chemistry, 2022, 64, 179-189.	12.9	28
3	Rear Interface Engineering to Suppress Migration of Iodide Ions for Efficient Perovskite Solar Cells with Minimized Hysteresis. Advanced Functional Materials, 2022, 32, 2107823.	14.9	57
4	N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Advanced Composites and Hybrid Materials, 2022, 5, 356-369.	21.1	93
5	Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: The impact of anchoring groups. Journal of Energy Chemistry, 2022, 68, 87-95.	12.9	28
6	Improvement of the electrokinetic fluxes by tall fescue: Alleviation of ion attenuation and maintainability of soil colloidal properties. Chemosphere, 2022, 290, 133128.	8.2	4
7	Intramolecular Noncovalent Interactionâ€Enabled Dopantâ€Free Holeâ€Transporting Materials for Highâ€Performance Inverted Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	18
8	Intramolecular Noncovalent Interactionâ€Enabled Dopantâ€Free Holeâ€Transporting Materials for Highâ€Performance Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, e202113749.	13.8	72
9	Face-on oriented hydrophobic conjugated polymers as dopant-free hole-transport materials for efficient and stable perovskite solar cells with a fill factor approaching 85%. Journal of Materials Chemistry A, 2022, 10, 3409-3417.	10.3	19
10	Hot-Air Treatment-Regulated Diffusion of LiTFSI to Accelerate the Aging-Induced Efficiency Rising of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 4378-4388.	8.0	9
11	Effect of Annealing Temperature on Tantalum-Doped TiO ₂ as Electron Transport Layer in Perovskite Solar Cells. IEEE Transactions on Electron Devices, 2022, 69, 1149-1154.	3.0	3
12	Compositional engineering of metal-xanthate precursors toward (Bi _{1â^{^,}<i>x</i>} Sb _{<i>x</i>}) ₂ S ₃ (0 ≤i>x ≤0.05) films with enhanced room temperature thermoelectric performance. Journal of Materials Chemistry C, 2022, 10, 1718-1726.	^S 5.5	6
13	F-containing cations improve the performance of perovskite solar cells. Journal of Semiconductors, 2022, 43, 010202.	3.7	12
14	Gold-Based Double Perovskite-Related Polymorphs: Low Dimensional with an Ultranarrow Bandgap. Chemistry of Materials, 2022, 34, 1544-1553.	6.7	6
15	Impacts of plasmonic nanoparticles incorporation and interface energy alignment for highly efficient carbon-based perovskite solar cells. Scientific Reports, 2022, 12, 5367.	3.3	20
16	Deciphering the Reduced Loss in High Fill Factor Inverted Perovskite Solar Cells with Methoxy-Substituted Poly(Triarylamine) as the Hole Selective Contact. ACS Applied Materials & Interfaces, 2022, 14, 12640-12651.	8.0	11
17	Passivating defects via 4-cyanobenzenaminium iodide enables 22.44% efficiency perovskite solar cells. Electrochimica Acta, 2022, 413, 140172.	5.2	12
18	CsPbBr3 perovskite based tandem device for CO2 photoreduction. Chemical Engineering Journal, 2022, 443, 136447.	12.7	8

#	Article	IF	CITATIONS
19	Compact Ga2O3 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition at Low Temperature. Nanomaterials, 2022, 12, 1510.	4.1	10
20	Atomic Permutation toward New Ruddlesden–Popper Two-Dimensional Perovskite with the Smallest Interlayer Spacing. Journal of Physical Chemistry C, 2022, 126, 8268-8277.	3.1	6
21	Surface Polarity Regulation by Relieving Fermi‣evel Pinning with Naphthalocyanine Tetraimides toward Efficient Perovskite Solar Cells with Improved Photostability. Advanced Energy Materials, 2022, 12, .	19.5	30
22	Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chemical Engineering Journal, 2022, 446, 137416.	12.7	14
23	2D or not 2D? Selectively formed low-dimensional perovskitoids based on chiral organic cation to passivate perovskite solar cells. Applied Materials Today, 2022, 28, 101550.	4.3	5
24	In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit. Nano Energy, 2022, 100, 107468.	16.0	29
25	Donor–ï̃€â€"Acceptor Type Porphyrin Derivatives Assisted Defect Passivation for Efficient Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007762.	14.9	106
26	Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 2021, 9, 1574-1582.	10.3	126
27	Improved Perovskite Solar Cell Performance by High Growth Rate Spatial Atomic Layer Deposited Titanium Oxide Compact Layer. IEEE Journal of the Electron Devices Society, 2021, 9, 49-56.	2.1	4
28	Enhanced photovoltage and stability of perovskite photovoltaics enabled by a cyclohexylmethylammonium iodide-based 2D perovskite passivation layer. Nanoscale, 2021, 13, 14915-14924.	5.6	16
29	The roles of fused-ring organic semiconductor treatment on SnO ₂ in enhancing perovskite solar cell performance. RSC Advances, 2021, 11, 3792-3800.	3.6	8
30	Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1250-1258.	5.1	9
31	Electron-deficient 4-nitrophthalonitrile passivated efficient perovskite solar cells with efficiency exceeding 22%. Sustainable Energy and Fuels, 2021, 5, 2347-2353.	4.9	18
32	Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6688-6698.	8.0	26
33	The Impact of PbI 2 :KI Alloys on the Performance of Sequentially Deposited Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 821-830.	2.0	5
34	Plasmonâ€Enhanced Perovskite Solar Cells with Efficiency Beyond 21 %: The Asynchronous Synergistic Effect of Water and Gold Nanorods. ChemPlusChem, 2021, 86, 291-297.	2.8	29
35	Effects of Water-to-Cement Ratio on Pore Structure Evolution and Strength Development of Cement Slurry Based on HYMOSTRUC3D and Micro-CT. Applied Sciences (Switzerland), 2021, 11, 3063.	2.5	13
36	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie, 2021, 133, 8384-8393.	2.0	66

#	Article	IF	CITATIONS
37	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie - International Edition, 2021, 60, 8303-8312.	13.8	90
38	cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Letters, 2021, 13, 101.	27.0	31
39	Hierarchical ZSM-5 Supported CoMn Catalyst for the Production of Middle Distillate from Syngas. Industrial & Engineering Chemistry Research, 2021, 60, 5783-5791.	3.7	9
40	Water-Triggered Transformation of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. ACS Applied Materials & Interfaces, 2021, 13, 23960-23969.	8.0	14
41	Tantalum-Doped TiO2 Prepared by Atomic Layer Deposition and Its Application in Perovskite Solar Cells. Nanomaterials, 2021, 11, 1504.	4.1	18
42	Marked Passivation Effect of Naphthaleneâ€1,8â€Dicarboximides in Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008405.	21.0	116
43	Enhanced Performance of Perovskite Solar Cells Loaded with Iodine-Rich CsPbI ₃ Quantum Dots. ACS Applied Energy Materials, 2021, 4, 7535-7543.	5.1	8
44	En Route to Wide Area Emitting Organic Lightâ€Emitting Transistors for Intrinsic Driveâ€Integrated Display Applications: A Comprehensive Review. Advanced Functional Materials, 2021, 31, 2105506.	14.9	10
45	Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Materials Today Physics, 2021, 21, 100543.	6.0	14
46	Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation(China), 2021, 2, 100170.	9.1	21
47	Structural, photophysical, electrochemical and spintronic study of first-row metal Tetrakis(meso-triphenylamine)-porphyrin complexes: A combined experimental and theoretical study. Dyes and Pigments, 2021, 193, 109469.	3.7	15
48	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	17.4	113
49	aLFA-C: astronomy large format array controller: design and characterization of an advanced FPA controller. , 2021, , .		0
50	Marked Near-Infrared Response of 2D Ca ₃ Sn ₂ S ₇ Chalcogenide Perovskite via Solid and Electronic Structure Engineering. Journal of Physical Chemistry C, 2021, 125, 20241-20248.	3.1	6
51	Influence of annealing temperature of nickel oxide as hole transport layer applied for inverted perovskite solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	2
52	Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. Journal of the American Chemical Society, 2021, 143, 18989-18996.	13.7	83
53	Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nature Energy, 2021, 6, 977-986.	39.5	103
54	The effect of the particle size on Fischer–Tropsch synthesis for ZSM-5 zeolite supported cobalt-based catalysts. Chemical Communications, 2021, 57, 13522-13525.	4.1	6

#	Article	IF	CITATIONS
55	Synergy of Plasmonic Silver Nanorod and Water for Enhanced Planar Perovskite Photovoltaic Devices. Solar Rrl, 2020, 4, 1900231.	5.8	26
56	Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors. Advanced Optical Materials, 2020, 8, 2001095.	7.3	46
57	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	14.9	78
58	Accelerated design of photovoltaic Ruddlesden–Popper perovskite Ca6Sn4S14â^' <i>x</i> O <i>x</i> using machine learning. APL Materials, 2020, 8, .	5.1	9
59	NdCl ₃ Dose as a Universal Approach for High-Efficiency Perovskite Solar Cells Based on Low-Temperature-Processed SnO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2020, 12, 46306-46316.	8.0	28
60	Antimony doped lead-free double perovskites (Cs ₂ NaBi _{1â^'x} Sb _x Cl ₆) with enhanced light absorption and tunable emission. Journal of Materials Chemistry C, 2020, 8, 13603-13611.	5.5	45
61	Novel Heterogeneous Catalysts for CO ₂ Hydrogenation to Liquid Fuels. ACS Central Science, 2020, 6, 1657-1670.	11.3	182
62	Perovskite Flash Memory with a Single-Layer Nanofloating Gate. Nano Letters, 2020, 20, 5081-5089.	9.1	15
63	Finding junction partners for CsPbI3 in a two-terminal tandem solar cell: A theoretical prospect. Nano Energy, 2020, 75, 104866.	16.0	39
64	Lewis-base containing spiro type hole transporting materials for high-performance perovskite solar cells with efficiency approaching 20%. Nanoscale, 2020, 12, 13157-13164.	5.6	30
65	Rationally designed indium oxide catalysts for CO ₂ hydrogenation to methanol with high activity and selectivity. Science Advances, 2020, 6, eaaz2060.	10.3	211
66	Effect of Annealing Temperature on Spatial Atomic Layer Deposited Titanium Oxide and Its Application in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1322.	4.1	17
67	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	5.6	40
68	Solvent-Free Synthesis of Mg-Incorporated Nanocrystalline SAPO-34 Zeolites via Natural Clay for Chloromethane-to-Olefin Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 4185-4193.	6.7	19
69	Efficient Perovskite Solar Cells by Reducing Interfaceâ€Mediated Recombination: a Bulky Amine Approach. Advanced Energy Materials, 2020, 10, 2000197.	19.5	198
70	Interfacial and structural modifications in perovskite solar cells. Nanoscale, 2020, 12, 5719-5745.	5.6	39
71	Fluoroaromatic Cationâ€Assisted Planar Junction Perovskite Solar Cells with Improved <i>V</i> _{OC} and Stability: The Role of Fluorination Position. Solar Rrl, 2020, 4, 2000107.	5.8	68
72	Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application. Dalton Transactions, 2020, 49, 5815-5822.	3.3	17

#	Article	IF	CITATIONS
73	Toward a Full One-Pass Conversion for the Fischer–Tropsch Synthesis over a Highly Selective Cobalt Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 8195-8201.	3.7	8
74	Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy. ELife, 2020, 9, .	6.0	27
75	Confocal and Super-resolution Imaging of RNA in Live Bacteria Using a Fluorogenic Silicon Rhodamine-binding Aptamer. Bio-protocol, 2020, 10, e3603.	0.4	1
76	Application of Perovskiteâ€Structured Materials in Fieldâ€Effect Transistors. Advanced Electronic Materials, 2019, 5, 1900444.	5.1	43
77	Standing Carbonâ€Supported Trace Levels of Metal Derived from Covalent Organic Framework for Electrocatalysis. Small, 2019, 15, e1905363.	10.0	32
78	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on a (<i>p</i> â€FC ₆ H ₄ C ₂ H ₄ NH ₃) ₂ [Capping Layer. Advanced Energy Materials, 2019, 9, 1802595.	Pbl<5924>44	
79	Graphene and carbon nanotube-based solar cells. , 2019, , 603-660.		2
80	Selective Transformation of CO ₂ and H ₂ into Lower Olefins over In ₂ O ₃ â€ZnZrO _{<i>x</i>} /SAPOâ€34 Bifunctional Catalysts. ChemSusChem, 2019, 12, 3582-3591.	6.8	103
81	SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. Journal of the American Chemical Society, 2019, 141, 7562-7571.	13.7	99
82	Trivalent ion mediated abnormal growth of all-inorganic perovskite nanocrystals and their divergent emission properties. Nanoscale, 2019, 11, 7903-7912.	5.6	29
83	Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catalysis, 2019, 9, 3866-3876.	11.2	177
84	Preparation of Highly Dispersion CuO/MCM-41 Catalysts for CO ₂ Hydrogenation. Journal of Nanoscience and Nanotechnology, 2019, 19, 3218-3222.	0.9	3
85	The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. Journal of Power Sources, 2019, 419, 99-105.	7.8	191
86	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	14.9	64
87	Tin-assisted growth of all-inorganic perovskite nanoplatelets with controllable morphologies and complementary emissions. CrystEngComm, 2019, 21, 2388-2397.	2.6	14
88	Phenanthrenone-based hole transport material for efficient dopant-free perovskite solar cells. Organic Electronics, 2019, 65, 135-140.	2.6	18
89	Trash into Treasure: δâ€FAPbI ₃ Polymorph Stabilized MAPbI ₃ Perovskite with Power Conversion Efficiency beyond 21%. Advanced Materials, 2018, 30, e1707143.	21.0	101
90	Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 2018, 27, 018805.	1.4	57

#	Article	IF	CITATIONS
91	Less is More: Dopantâ€Free Hole Transporting Materials for Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702512.	19.5	236
92	Template Controlled Synthesis of Mesoporous TiO2Particles for Efficient Photoanodes in Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2018, 165, F1-F6.	2.9	7
93	Organic dyes containing fused acenes as building blocks: Optical, electrochemical and photovoltaic properties. Chinese Chemical Letters, 2018, 29, 289-292.	9.0	18
94	Direct Production of Lower Olefins from CO ₂ Conversion via Bifunctional Catalysis. ACS Catalysis, 2018, 8, 571-578.	11.2	382
95	Leadâ€Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?. Advanced Science, 2018, 5, 1700331.	11.2	233
96	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	18.8	67
97	Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 23366-23377.	10.3	68
98	Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 2018, 9, 5028.	12.8	245
99	Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 4807.	12.8	161
100	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	31.4	715
101	Pulsed interleaved excitation-based line-scanning spatial correlation spectroscopy (PIE-lsSCS). Scientific Reports, 2018, 8, 16722.	3.3	7
102	Facile Solventâ€free Synthesis of Hollow Fiber Catalyst Assembled by <i>c–</i> axis Oriented ZSMâ€5 Crystals. ChemCatChem, 2018, 10, 5619-5626.	3.7	15
103	Impact of Ï€ Spacers on the Optical, Electrochemical and Photovoltaic performance of Dâ€(Ï€â€A) 2 Based Sensitizers. ChemistrySelect, 2018, 3, 5269-5276.	1.5	4
104	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	9.0	21
105	Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. Npj Quantum Materials, 2018, 3, .	5.2	76
106	All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238.	16.0	85
107	Development of Perovskite-Type Materials for Thermoelectric Application. Materials, 2018, 11, 999.	2.9	101
108	Effect of Filler-Hydrates Adhesion Properties on Cement Paste Strength. ACI Materials Journal, 2018, 115, .	0.2	6

#	Article	IF	CITATIONS
109	Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nature Photonics, 2017, 11, 163-169.	31.4	109
110	Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catalysis, 2017, 7, 3622-3631.	11.2	157
111	Development of electron and hole selective contact materials for perovskite solar cells. Chinese Chemical Letters, 2017, 28, 1144-1152.	9.0	20
112	Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9, 1019-1024.	13.6	757
113	Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahighâ€Rate Zinc–Air Batteries. Advanced Functional Materials, 2017, 27, 1700041.	14.9	85
114	From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells. Chemistry of Materials, 2017, 29, 3490-3498.	6.7	234
115	Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A, 2017, 5, 7811-7815.	10.3	209
116	A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy. Chemical Communications, 2017, 53, 979-982.	4.1	32
117	Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy and Environmental Science, 2017, 10, 621-627.	30.8	436
118	Molecularly Engineered Phthalocyanines as Holeâ€Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5%. Advanced Energy Materials, 2017, 7, 1601733.	19.5	90
119	Protein-based fluorescent nanoparticles for super-resolution STED imaging of live cells. Chemical Science, 2017, 8, 2396-2400.	7.4	36
120	Aberration compensation and resolution improvement of focus modulation microscopy. Journal of Optics (United Kingdom), 2017, 19, 015302.	2.2	3
121	Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1415-1420.	10.3	17
122	Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co ₂ C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catalysis, 2017, 7, 8023-8032.	11.2	79
123	A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science and Technology, 2017, 7, 4580-4598.	4.1	385
124	Unveiling the Concentration-Dependent Grain Growth of Perovskite Films from One- and Two-Step Deposition Methods: Implications for Photovoltaic Application. ACS Applied Materials & Interfaces, 2017, 9, 25063-25066.	8.0	20
125	Dopantâ€Free Holeâ€Transporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606555.	21.0	171
126	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Dopants. Advanced Materials, 2017, 29, 1702157.	21.0	115

#	Article	IF	CITATIONS
127	Opposite-view digital holographic microscopy with autofocusing capability. Scientific Reports, 2017, 7, 4255.	3.3	18
128	Low ost Perovskite Solar Cells Employing Dimethoxydiphenylamine‣ubstituted Bistricyclic Aromatic Enes as Hole Transport Materials. ChemSusChem, 2017, 10, 3825-3832.	6.8	37
129	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	10.3	103
130	Precise background subtraction in stimulated emission double depletion nanoscopy. Optics Letters, 2017, 42, 831.	3.3	35
131	Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.	6.8	61
132	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie, 2016, 128, 7590-7594.	2.0	37
133	Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylideneâ€Based Holeâ€Transporting Material. Angewandte Chemie - International Edition, 2016, 55, 7464-7468.	13.8	165
134	An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous Al2O3 as the hybrid interfacial hole-transporting layer. Physical Chemistry Chemical Physics, 2016, 18, 27083-27089.	2.8	38
135	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. Advanced Materials, 2016, 28, 3966-3972.	21.0	152
136	Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 2016, 23, 138-144.	16.0	253
137	Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science, 2016, 7, 6068-6075.	7.4	85
138	Impact of strength and size of donors on the optoelectronic properties of D–π–A sensitizers. RSC Advances, 2016, 6, 37347-37361.	3.6	10
139	Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26827-26833.	8.0	16
140	Pbl ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	13.7	107
141	A balanced cation exchange reaction toward highly uniform and pure phase FA _{1â[~]x} MA _x PbI ₃ perovskite films. Journal of Materials Chemistry A, 2016, 4, 14437-14443.	10.3	64
142	3 D Imaging and Structural Analysis of a Mesoporousâ€6ilicaâ€Bodyâ€6upported Eggshell Cobalt Catalyst fo Fischer–Tropsch Synthesis. ChemCatChem, 2016, 8, 2920-2929.	or 3.7	3
143	Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant. ChemSusChem, 2016, 9, 2708-2714.	6.8	62
144	Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb ²⁺ Ions in Rainwater Polluted by Leaking Perovskite Solar Cells. Analytical Chemistry, 2016, 88, 12316-12322.	6.5	86

#	Article	IF	CITATIONS
145	3 D Imaging and Structural Analysis of a Mesoporous-Silica-Body-Supported Eggshell Cobalt Catalyst for Fischer-Tropsch Synthesis. ChemCatChem, 2016, 8, 2860-2860.	3.7	0
146	A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016, 1, .	39.5	816
147	A highly hindered bithiophene-functionalized dispiro-oxepine derivative as an efficient hole transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18259-18264.	10.3	78
148	Photovoltaic and Amplified Spontaneous Emission Studies of Highâ€Quality Formamidinium Lead Bromide Perovskite Films. Advanced Functional Materials, 2016, 26, 2846-2854.	14.9	66
149	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	4.0	80
150	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphileâ€Modified CH ₃ NH ₃ PbI ₃ . Advanced Materials, 2016, 28, 2910-2915.	21.0	258
151	Covalent Immobilization of a Molecular Catalyst on Cu ₂ O Photocathodes for CO ₂ Reduction. Journal of the American Chemical Society, 2016, 138, 1938-1946.	13.7	272
152	Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nature Communications, 2016, 7, 10334.	12.8	602
153	Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2016, 2, e1501170.	10.3	1,669
154	A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale, 2016, 8, 6335-6340.	5.6	32
155	Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Scientific Reports, 2015, 5, 18006.	3.3	35
156	Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays. Small, 2015, 11, 5533-5539.	10.0	80
157	Unraveling the Reasons for Efficiency Loss in Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 3925-3933.	14.9	129
158	Yttrium oxide modified Cu/ZnO/Al ₂ O ₃ catalysts via hydrotalcite-like precursors for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2015, 5, 4365-4377.	4.1	99
159	Double D–π–A Dye Linked by 2,2′â€Bipyridine Dicarboxylic Acid: Influence of <i>paraâ€</i> and <i>metaâ€</i> Substituted Carboxyl Anchoring Group. ChemPhysChem, 2015, 16, 1035-1041.	2.1	6
160	Enhanced Interactions between Gold and MnO ₂ Nanowires for Water Oxidation: A Comparison of Different Chemical and Physical Preparation Methods. ACS Sustainable Chemistry and Engineering, 2015, 3, 2049-2057.	6.7	33
161	Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.	30.8	163
162	Ultra-tiny Co(OH) ₂ particles supported on graphene oxide for highly efficient electrocatalytic water oxidation. RSC Advances, 2015, 5, 39075-39079.	3.6	23

#	Article	IF	CITATIONS
163	A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy and Environmental Science, 2015, 8, 1986-1991.	30.8	206
164	A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy and Environmental Science, 2015, 8, 1816-1823.	30.8	202
165	Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method. Journal of Materials Chemistry A, 2015, 3, 23990-23999.	10.3	46
166	Molecular Engineering of Functional Materials for Energy and Opto-Electronic Applications. Chimia, 2015, 69, 253.	0.6	8
167	High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy and Environmental Science, 2015, 8, 3550-3556.	30.8	384
168	Unravel the Impact of Anchoring Groups on the Photovoltaic Performances of Diketopyrrolopyrrole Sensitizers for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2389-2396.	6.7	65
169	Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 16172-16178.	13.7	321
170	Efficient and selective carbon dioxide reduction on low cost protected Cu ₂ O photocathodes using a molecular catalyst. Energy and Environmental Science, 2015, 8, 855-861.	30.8	142
171	A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1400980.	19.5	80
172	Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector. , 2014, , .		1
173	Chemistry of Sensitizers for Dye-sensitized Solar Cells. RSC Energy and Environment Series, 2014, , 186-241.	0.5	3
174	Extended Ï€â€Bridge in Organic Dyeâ€Sensitized Solar Cells: the Longer, the Better?. Advanced Energy Materials, 2014, 4, 1301485.	19.5	61
175	Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solidâ€ S tate Solar Cells. Advanced Functional Materials, 2014, 24, 3250-3258.	14.9	850
176	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	30.8	1,220
177	Subâ€Nanometer Conformal TiO ₂ Blocking Layer for High Efficiency Solidâ€State Perovskite Absorber Solar Cells. Advanced Materials, 2014, 26, 4309-4312.	21.0	148
178	Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters, 2014, 14, 2591-2596.	9.1	397
179	Yttrium-substituted nanocrystalline TiO ₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6, 1508-1514.	5.6	162
180	Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells. ACS Nano, 2014, 8, 362-373.	14.6	663

#	Article	IF	CITATIONS
181	Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.	13.6	3,982
182	Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene based organic sensitizers for dye-sensitized s cells. RSC Advances, 2014, 4, 54130-54133.	olar 3.6	16
183	Power from the sun: Perovskite solar cells. , 2014, , .		4
184	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	9.1	185
185	Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials, 2014, 26, 6160-6164.	6.7	502
186	Molecular Engineering of 2-Quinolinone Based Anchoring Groups for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16896-16903.	3.1	41
187	A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response. Journal of Materials Chemistry A, 2014, 2, 11586-11590.	10.3	73
188	Mixedâ€Organicâ€Cation Perovskite Photovoltaics for Enhanced Solarâ€Light Harvesting. Angewandte Chemie - International Edition, 2014, 53, 3151-3157.	13.8	1,117
189	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316-319.	27.8	8,542
190	Growth of Ultrathin Organic Semiconductor Microstripes with Thickness Control in the Monolayer Precision. Angewandte Chemie - International Edition, 2013, 52, 12530-12535.	13.8	92
191	Facile synthesis of a bulky BPTPA donor group suitable for cobalt electrolyte based dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5535.	10.3	58
192	High Performance Fieldâ€Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film. Advanced Materials, 2013, 25, 3419-3425.	21.0	263
193	Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2642-2648.	6.7	49
194	Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.	13.8	61
195	Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4330-4333.	4.6	95
196	A structural study of DPP-based sensitizers for DSC applications. Chemical Communications, 2012, 48, 10724.	4.1	68
197	Mesoscopic CH ₃ NH ₃ Pbl ₃ /TiO ₂ Heterojunction Solar Cells. Journal of the American Chemical Society, 2012, 134, 17396-17399.	13.7	1,801
198	Microribbon Field-Effect Transistors Based on Dithieno[2,3-d;2,3′-d′]benzo[1,2-b;4,5-b′]dithiophene Processed by Solvent Vapor Diffusion. Chemistry of Materials, 2011, 23, 4960-4964.	6.7	27

#	Article	IF	CITATIONS
199	Selfâ€Assembly and Microstructural Control of a Hexaâ€∢i>periâ€hexabenzocoronene–Perylene Diimide Dyad by Solvent Vapor Diffusion. Small, 2011, 7, 2841-2846.	10.0	25
200	Heteroheptacenes with Fused Thiophene and Pyrrole Rings. Chemistry - A European Journal, 2010, 16, 5119-5128.	3.3	48
201	Controllable Growth and Field-Effect Property of Monolayer to Multilayer Microstripes of an Organic Semiconductor. Journal of the American Chemical Society, 2010, 132, 8807-8809.	13.7	155
202	Dithieno[2,3â€ <i>d</i> ;2′,3′â€ <i>d</i> ′]benzo[1,2â€ <i>b</i> ;4,5â€ <i>b</i> @2]dithiophene (DTBDT) a for Highâ€Performance, Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 213-216.	s Semicor 21.0	nductor 237
203	Conjugated Ladder-Type Heteroacenes Bearing Pyrrole and Thiophene Ring Units: Facile Synthesis and Characterization. Journal of Organic Chemistry, 2008, 73, 9207-9213.	3.2	64
204	Benzo[1,2-b:4,5-b′]bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. Chemical Communications, 2008, , 1548.	4.1	95