
Adam Sikora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771536/publications.pdf Version: 2024-02-01

ADAM SIKODA

#	Article	IF	CITATIONS
1	Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radical Biology and Medicine, 2022, 179, 34-46.	1.3	17
2	Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Scientific Reports, 2022, 12, .	1.6	8
3	Identification of Peroxynitrite by Profiling Oxidation and Nitration Products from Mitochondria-Targeted Arylboronic Acid. Methods in Molecular Biology, 2021, 2275, 315-327.	0.4	8
4	Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochemistry and Biophysics, 2021, 79, 845-856.	0.9	4
5	Two-photon fluorescent probe for cellular peroxynitrite: Fluorescence detection, imaging, and identification of peroxynitrite-specific products. Free Radical Biology and Medicine, 2021, 169, 24-35.	1.3	20
6	On the chemical reactivity of tricyanofuran(TCF)-based near-infrared fluorescent redox probes – Effects of glutathione on the probe response and product fluorescence. Dyes and Pigments, 2021, 192, 109405.	2.0	13
7	Kinetic Study on the Reactivity of Azanone (HNO) toward Cyclic C-Nucleophiles. International Journal of Molecular Sciences, 2021, 22, 12982.	1.8	6
8	Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Frontiers in Chemistry, 2020, 8, 580899.	1.8	48
9	Oxidation of ethidium-based probes by biological radicals: mechanism, kinetics and implications for the detection of superoxide. Scientific Reports, 2020, 10, 18626.	1.6	14
10	Decomposition of Piloty's acid derivatives – Toward the understanding of factors controlling HNO release. Archives of Biochemistry and Biophysics, 2019, 661, 132-144.	1.4	11
11	Fluorescent probes for the detection of nitroxyl (HNO). Free Radical Biology and Medicine, 2018, 128, 69-83.	1.3	29
12	Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxidants and Redox Signaling, 2018, 28, 1416-1432.	2.5	70
13	Mitochondria-targeted metformins: anti-tumour and redox signalling mechanisms. Interface Focus, 2017, 7, 20160109.	1.5	26
14	Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies. Cell Biochemistry and Biophysics, 2017, 75, 311-317.	0.9	18
15	A kinetic study on the reactivity of azanone (HNO) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide - Biology and Chemistry, 2017, 69, 61-68.	1.2	15
16	N,N.N′,N′-tetramethylhydroethidine (TMHE) - in search for better probes for the detection of superoxide radical anion. Free Radical Biology and Medicine, 2017, 108, S38.	1.3	2
17	Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews, 2017, 117, 10043-10120.	23.0	1,051
18	Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochemistry and Biophysics, 2017, 75, 335-349.	0.9	24

ADAM SIKORA

#	Article	IF	CITATIONS
19	Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation. Journal of Biological Chemistry, 2016, 291, 7029-7044.	1.6	58
20	Mechanism of oxidative conversion of Amplex® Red to resorufin: Pulse radiolysis and enzymatic studies. Free Radical Biology and Medicine, 2016, 95, 323-332.	1.3	108
21	Characterization of Fluorescein-Based Monoboronate Probe and Its Application to the Detection of Peroxynitrite in Endothelial Cells Treated with Doxorubicin. Chemical Research in Toxicology, 2016, 29, 735-746.	1.7	37
22	Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes – Limitations, progress, and perspectives. Pharmacological Reports, 2015, 67, 756-764.	1.5	54
23	Detection and Differentiation Between Peroxynitrite and Hydroperoxides Using Mitochondria-Targeted Arylboronic Acid. Methods in Molecular Biology, 2015, 1264, 171-181.	0.4	27
24	Nitroxyl (HNO) Reacts with Molecular Oxygen and Forms Peroxynitrite at Physiological pH. Journal of Biological Chemistry, 2014, 289, 35570-35581.	1.6	64
25	Pulse radiolysis and spectrophotometric studies on the binding of organic cations with heparin. Radiation Physics and Chemistry, 2014, 99, 6-11.	1.4	11
26	On the use of fluorescence lifetime imaging and dihydroethidium to detect superoxide in intact animals and ex vivo tissues: A reassessment. Free Radical Biology and Medicine, 2014, 67, 278-284.	1.3	49
27	Real-Time Monitoring of Reactive Oxygen and Nitrogen Species in a Multiwell Plate Using the Diagnostic Marker Products of Specific Probes. Methods in Enzymology, 2013, 526, 145-157.	0.4	24
28	Reaction between Peroxynitrite and Triphenylphosphonium-Substituted Arylboronic Acid Isomers: Identification of Diagnostic Marker Products and Biological Implications. Chemical Research in Toxicology, 2013, 26, 856-867.	1.7	44
29	Global Profiling of Reactive Oxygen and Nitrogen Species in Biological Systems. Journal of Biological Chemistry, 2012, 287, 2984-2995.	1.6	153
30	Boronate Probes as Diagnostic Tools for Real Time Monitoring of Peroxynitrite and Hydroperoxides. Chemical Research in Toxicology, 2012, 25, 1793-1799.	1.7	202
31	Reaction between Peroxynitrite and Boronates: EPR Spin-Trapping, HPLC Analyses, and Quantum Mechanical Study of the Free Radical Pathway. Chemical Research in Toxicology, 2011, 24, 687-697.	1.7	87
32	Dual Antioxidant Activity of Boronate-Based Prochelators: Scavenging Peroxynitrite and Metal Ion Chelation. Free Radical Biology and Medicine, 2011, 51, S100-S101.	1.3	0
33	Reduction of Mitochondrial Reserve Capacity in Endothelial Cells by Nitric Oxide and Superoxide - Detection and Quantitation of Peroxynitrite Formed from Cogenerated Nitric Oxide and Superoxide. Free Radical Biology and Medicine, 2010, 49, S123-S124.	1.3	0
34	The Mechanism of the Oxidative Transformation of Boronate Compounds - A Quantum Mechanical Study. Free Radical Biology and Medicine, 2010, 49, S216.	1.3	0
35	Peroxynitrite Is the Major Species Formed from Different Flux Ratios of Co-generated Nitric Oxide and Superoxide. Journal of Biological Chemistry, 2010, 285, 14210-14216.	1.6	194
36	Reply to Jourd'heuil: Peroxynitrite Is the Major Species Formed from Different Flux Ratios of Co-generated Nitric Oxide and Superoxide. Journal of Biological Chemistry, 2010, 285, le16.	1.6	2

ADAM SIKORA

#	Article	IF	CITATIONS
37	Radicals and Radical Ions Derived from Indole, Indole-3-carbinol and Diindolylmethane. Journal of Physical Chemistry A, 2010, 114, 6787-6794.	1.1	16
38	Mechanistic Aspects of Radiation-Induced Oligomerization of 3,4-Ethylenedioxythiophene in Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 11552-11559.	1.1	7
39	Dihalide and Pseudohalide Radical Anions as Oxidizing Agents in Nonaqueous Solvents. Journal of Physical Chemistry A, 2010, 114, 861-866.	1.1	21
40	Direct oxidation of boronates by peroxynitrite: Mechanism and implications in fluorescence imaging of peroxynitrite. Free Radical Biology and Medicine, 2009, 47, 1401-1407.	1.3	300
41	The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2â or peroxynitrite and bicarbonate: Role of intramolecular electron transfer mechanism?. Archives of Biochemistry and Biophysics, 2009, 484, 134-145.	1.4	22
42	Radical scavenging properties of nicotinamide and its metabolites. Radiation Physics and Chemistry, 2008, 77, 259-266.	1.4	9
43	Mechanistic Aspects of the Oxidative and Reductive Fragmentation ofN-Nitrosoamines:Â A New Method for Generating Nitrenium Cations, Amide Anions, and Aminyl Radicals. Journal of the American Chemical Society, 2007, 129, 3211-3217.	6.6	32
44	Disproportionation of Clozapine Radical: A Link between One-Electron Oxidation of Clozapine and Formation of Its Nitrenium Cation. Chemical Research in Toxicology, 2007, 20, 1093-1098.	1.7	20
45	Radical scavenging and NO-releasing properties of selected β-adrenoreceptor antagonists. Free Radical Research, 2006, 40, 741-752.	1.5	16
46	Anthralin:  Primary Products of Its Redox Reactions. Journal of Organic Chemistry, 2006, 71, 5312-5319.	1.7	18
47	Mechanistic Aspects of Alloxan Diabetogenic Activity:Â A Key Role of Ketoâ^'Enol Inversion of Dialuric Acid on Ionization. Journal of Physical Chemistry A, 2006, 110, 7272-7278.	1.1	8
48	Color changes accompanying one-electron reduction and oxidation of the azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 373-379.	2.0	15
49	The Chemistry of HNO: Mechanisms and Reaction Kinetics. Frontiers in Chemistry, 0, 10, .	1.8	2