## John Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771529/publications.pdf Version: 2024-02-01



ΙΟΗΝ Ηυντ

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-quality male field crickets invest heavily in sexual display but die young. Nature, 2004, 432,<br>1024-1027.                                                                                                                  | 13.7 | 426       |
| 2  | What is genetic quality?. Trends in Ecology and Evolution, 2004, 19, 329-333.                                                                                                                                                      | 4.2  | 388       |
| 3  | Male–male competition, female mate choice and their interaction: determining total sexual selection.<br>Journal of Evolutionary Biology, 2009, 22, 13-26.                                                                          | 0.8  | 333       |
| 4  | Female Mate Choice as a Conditionâ€Dependent Lifeâ€History Trait. American Naturalist, 2005, 166, 79-92.                                                                                                                           | 1.0  | 225       |
| 5  | Patterns of fluctuating asymmetry in beetle horns: an experimental examination of the honest signalling hypothesis. Behavioral Ecology and Sociobiology, 1997, 41, 109-114.                                                        | 0.6  | 220       |
| 6  | Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan<br>in <i>Drosophila melanogaster</i> . Aging Cell, 2015, 14, 605-615.                                                                     | 3.0  | 187       |
| 7  | EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871-880.                                                                                     | 1.1  | 186       |
| 8  | Optimal foraging for specific nutrients in predatory beetles. Proceedings of the Royal Society B:<br>Biological Sciences, 2012, 279, 2212-2218.                                                                                    | 1.2  | 176       |
| 9  | Fighting success and attractiveness as predictors of male mating success in the black field cricket,<br>Teleogryllus commodus: the effectiveness of no-choice tests. Behavioral Ecology and Sociobiology,<br>2005, 58, 1-8.        | 0.6  | 172       |
| 10 | Quantifying the strength and form of sexual selection on men's traits. Evolution and Human<br>Behavior, 2013, 34, 334-341.                                                                                                         | 1.4  | 154       |
| 11 | The Indirect Benefits of Mating with Attractive Males Outweigh the Direct Costs. PLoS Biology, 2005, 3, e33.                                                                                                                       | 2.6  | 152       |
| 12 | Evolution of Sexual Dimorphism and Male Dimorphism in the Expression of Beetle Horns: Phylogenetic<br>Evidence for Modularity, Evolutionary Lability, and Constraint. American Naturalist, 2005, 166,<br>S42-S68.                  | 1.0  | 151       |
| 13 | Complex Multivariate Sexual Selection on Male Acoustic Signaling in a Wild Population of<br>Teleogryllus commodus. American Naturalist, 2006, 167, E102-E116.                                                                      | 1.0  | 150       |
| 14 | Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedings of the Royal<br>Society B: Biological Sciences, 2001, 268, 2409-2414.                                                                           | 1.2  | 133       |
| 15 | EVIDENCE FOR STRONG INTRALOCUS SEXUAL CONFLICT IN THE INDIAN MEAL MOTH, PLODIA<br>INTERPUNCTELLA. Evolution; International Journal of Organic Evolution, 2011, 65, 2085-2097.                                                      | 1.1  | 114       |
| 16 | Fecundity selection theory: concepts and evidence. Biological Reviews, 2017, 92, 341-356.                                                                                                                                          | 4.7  | 110       |
| 17 | The genetics of maternal care: Direct and indirect genetic effects on phenotype in the dung beetle<br>Onthophagus taurus. Proceedings of the National Academy of Sciences of the United States of<br>America, 2002, 99, 6828-6832. | 3.3  | 105       |
| 18 | Evolutionary Response to Sexual Selection in Male Genital Morphology. Current Biology, 2009, 19, 1442-1446.                                                                                                                        | 1.8  | 104       |

| #  | Article                                                                                                                                                                                                                                                 | IF               | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 19 | Males Influence Maternal Effects That Promote Sexual Selection: A Quantitative Genetic Experiment with Dung BeetlesOnthophagus taurus. American Naturalist, 2003, 161, 852-859.                                                                         | 1.0              | 101           |
| 20 | The relative importance of intra- and intersexual selection on human male sexually dimorphic traits.<br>Evolution and Human Behavior, 2018, 39, 424-436.                                                                                                | 1.4              | 97            |
| 21 | MALE COCKROACHES PREFER A HIGH CARBOHYDRATE DIET THAT MAKES THEM MORE ATTRACTIVE TO<br>FEMALES: IMPLICATIONS FOR THE STUDY OF CONDITION DEPENDENCE. Evolution; International Journal<br>of Organic Evolution, 2011, 65, 1594-1606.                      | 1.1              | 92            |
| 22 | Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biology Letters, 2006, 2, 586-589.                                                                                     | 1.0              | 88            |
| 23 | Mate choice for genetic quality when environments vary: suggestions for empirical progress.<br>Genetica, 2008, 134, 69-78.                                                                                                                              | 0.5              | 79            |
| 24 | Separate and combined effects of nutrition during juvenile and sexual development on female<br>life-history trajectories: the thrifty phenotype in a cockroach. Proceedings of the Royal Society B:<br>Biological Sciences, 2009, 276, 3257-3264.       | 1.2              | 79            |
| 25 | SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792.                                                                                      | 1.1              | 76            |
| 26 | Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142144.                                                        | 1.2              | 72            |
| 27 | Behavioural dynamics of biparental care in the dung beetle Onthophagus taurus. Animal Behaviour, 2002, 64, 65-75.                                                                                                                                       | 0.8              | 71            |
| 28 | Patterns of parental provisioning covary with male morphology in a horned beetle ( Onthophagus) Tj ETQq0 0 0 r                                                                                                                                          | gBT /Over<br>0.6 | lock 10 Tf 50 |
| 29 | Reconciling Strong Stabilizing Selection with the Maintenance of Genetic Variation in a Natural<br>Population of Black Field Crickets (Teleogryllus commodus). Genetics, 2007, 177, 875-880.                                                            | 1.2              | 68            |
| 30 | EXPERIMENTAL EVIDENCE THAT SEXUAL CONFLICT INFLUENCES THE OPPORTUNITY, FORM AND INTENSITY OF SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2008, 62, 2305-2315.                                                              | 1.1              | 68            |
| 31 | Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S64-6.                                                                                                                        | 1.2              | 66            |
| 32 | Effects of juvenile and adult diet on ageing and reproductive effort of male and female black field crickets, <i>Teleogryllus commodus</i> . Functional Ecology, 2009, 23, 602-611.                                                                     | 1.7              | 63            |
| 33 | Experimental evidence for multivariate stabilizing sexual selection. Evolution; International Journal of Organic Evolution, 2005, 59, 871-80.                                                                                                           | 1.1              | 59            |
| 34 | Sexual and Natural Selection Both Influence Male Genital Evolution. PLoS ONE, 2013, 8, e63807.                                                                                                                                                          | 1.1              | 58            |
| 35 | The Geometry of Nutrient Space–Based Life-History Trade-Offs: Sex-Specific Effects of Macronutrient<br>Intake on the Trade-Off between Encapsulation Ability and Reproductive Effort in Decorated Crickets.<br>American Naturalist, 2018, 191, 452-474. | 1.0              | 57            |
| 36 | Artificial Selection on Male Longevity Influences Ageâ€Dependent Reproductive Effort in the Black Field                                                                                                                                                 | 1.0              | 56            |

Cricket Teleogryllus commodus. American Naturalist, 2006, 168, E72-E86.

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Male attractiveness covaries with fighting ability but not with prior fight outcome in house crickets.<br>Behavioral Ecology, 2005, 16, 196-200.                                                                             | 1.0 | 51        |
| 38 | Cuticular hydrocarbons as a basis for chemosensory selfâ€referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecology Letters, 2013, 16, 346-353.                                   | 3.0 | 49        |
| 39 | Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132353.                                                             | 1.2 | 48        |
| 40 | NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472-2477.                        | 1.1 | 47        |
| 41 | ANTAGONISTIC RESPONSES TO NATURAL AND SEXUAL SELECTION AND THE SEX-SPECIFIC EVOLUTION OF CUTICULAR HYDROCARBONS INâ€, <i>DROSOPHILA SIMULANS</i> . Evolution; International Journal of Organic Evolution, 2012, 66, 665-677. | 1.1 | 42        |
| 42 | Evolutionary rates for multivariate traits: the role of selection and genetic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130252.                                        | 1.8 | 39        |
| 43 | Dietary choice for a balanced nutrient intake increases the mean and reduces the variance in the reproductive performance of male and female cockroaches. Ecology and Evolution, 2016, 6, 4711-4730.                         | 0.8 | 39        |
| 44 | OXIDATIVE STRESS AND THE EVOLUTION OF SEX DIFFERENCES IN LIFE SPAN AND AGEING IN THE DECORATED CRICKET, <i>GRYLLODES SIGILLATUS </i> . Evolution; International Journal of Organic Evolution, 2013, 67, 620-634.             | 1.1 | 38        |
| 45 | Title is missing!. Journal of Insect Behavior, 1999, 12, 67-79.                                                                                                                                                              | 0.4 | 37        |
| 46 | Patterns of fluctuating asymmetry in beetle horns: no evidence for reliable signaling. Behavioral<br>Ecology, 1998, 9, 465-470.                                                                                              | 1.0 | 35        |
| 47 | No Intra-Locus Sexual Conflict over Reproductive Fitness or Ageing in Field Crickets. PLoS ONE, 2007, 2, e155.                                                                                                               | 1.1 | 33        |
| 48 | Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evolution Letters, 2020, 4, 19-33.                                                                                                      | 1.6 | 32        |
| 49 | Ageâ€dependent variation in the terminal investment threshold in male crickets. Evolution;<br>International Journal of Organic Evolution, 2018, 72, 578-589.                                                                 | 1.1 | 31        |
| 50 | Macronutrient balance mediates the growth of sexually selected weapons but not genitalia in male<br>broadâ€horned beetles. Functional Ecology, 2016, 30, 769-779.                                                            | 1.7 | 30        |
| 51 | Dung pad residence time covaries with male morphology in the dung beetle Onthophagus taurus.<br>Ecological Entomology, 1999, 24, 174-180.                                                                                    | 1.1 | 29        |
| 52 | Optimal maternal investment in the dung beetle Onthophagus taurus ?. Behavioral Ecology and Sociobiology, 2004, 55, 302-312.                                                                                                 | 0.6 | 29        |
| 53 | Sperm competition, alternative mating tactics and context-dependent fertilization success in the burying beetle, Nicrophorus vespilloides. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1309-1315.    | 1.2 | 28        |
| 54 | INBREEDING AND ADVERTISEMENT CALLING IN THE CRICKET TELEOGRYLLUS COMMODUS: LABORATORY AND FIELD EXPERIMENTS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.                                         | 1.1 | 28        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Genotype-by-Environment Interactions for Female Mate Choice of Male Cuticular Hydrocarbons in<br>Drosophila simulans. PLoS ONE, 2013, 8, e67623.                                                                                                               | 1.1 | 27        |
| 56 | Paternal effects in <i>Arabidopsis</i> indicate that offspring can influence their own size. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2885-2893.                                                                                    | 1.2 | 26        |
| 57 | The Genetics of Cuticular Hydrocarbon Profiles in the Fruit Fly Drosophila simulans. Journal of<br>Heredity, 2012, 103, 230-239.                                                                                                                               | 1.0 | 24        |
| 58 | Rival male chemical cues evoke changes in male pre- and post-copulatory investment in a flour beetle.<br>Behavioral Ecology, 2015, 26, 1021-1029.                                                                                                              | 1.0 | 23        |
| 59 | Sexual selection and population divergence I: The influence of socially flexible cuticular<br>hydrocarbon expression in male field crickets ( <i>Teleogryllus oceanicus</i> ). Evolution;<br>International Journal of Organic Evolution, 2016, 70, 82-97.      | 1.1 | 23        |
| 60 | Fluctuating asymmetry, call structure and the risk of attack from phonotactic parasitoids in the bushcricket Sciarasaga quadrata (Orthoptera: Tettigoniidae). Oecologia, 1998, 116, 356-364.                                                                   | 0.9 | 22        |
| 61 | Title is missing!. , 2001, 14, 283-297.                                                                                                                                                                                                                        |     | 22        |
| 62 | EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871.                                                                                                                     | 1.1 | 22        |
| 63 | Biting off more than you can chew: sexual selection on the free amino acid composition of the spermatophylax in decorated crickets. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2531-2538.                                             | 1.2 | 22        |
| 64 | Little evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and<br>reproduction in the black field cricket <i>Teleogryllus commodus</i> . Evolution; International<br>Journal of Organic Evolution, 2017, 71, 2159-2177. | 1.1 | 22        |
| 65 | SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.                                                                                         | 1.1 | 21        |
| 66 | Sex ratio bias in the dung beetle Onthophagus taurus: adaptive allocation or sex-specific offspring mortality?. Evolutionary Ecology, 2011, 25, 363-372.                                                                                                       | 0.5 | 20        |
| 67 | Sexual selection and population divergence II. Divergence in different sexual traits and signal modalities in field crickets ( <i>Teleogryllus oceanicus</i> ). Evolution; International Journal of Organic Evolution, 2017, 71, 1614-1626.                    | 1.1 | 20        |
| 68 | Self-referent phenotype matching and its role in female mate choice in arthropods. Environmental<br>Epigenetics, 2013, 59, 239-248.                                                                                                                            | 0.9 | 19        |
| 69 | Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, <i>Neovison vison</i> .<br>British Journal of Nutrition, 2014, 112, 1226-1233.                                                                                                      | 1.2 | 19        |
| 70 | Effects of macronutrient intake on the lifespan and fecundity of the marula fruit fly, <i>Ceratitis<br/>cosyra</i> (Tephritidae): Extreme lifespan in a host specialist. Ecology and Evolution, 2017, 7, 9808-9817.                                            | 0.8 | 19        |
| 71 | Mating opportunities and energetic constraints drive variation in ageâ€dependent sexual signalling.<br>Functional Ecology, 2017, 31, 728-741.                                                                                                                  | 1.7 | 19        |
| 72 | Interactions Between Mitochondrial Haplotype and Dietary Macronutrient Ratios Confer Sex-Specific<br>Effects on Longevity in Drosophila melanogaster. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 2019, 74, 1573-1581.     | 1.7 | 19        |

| #  | Article                                                                                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mapping sex differences in the effects of protein and carbohydrates on lifespan and reproduction in<br>Drosophila melanogaster: is measuring nutrient intake essential?. Biogerontology, 2022, 23, 129-144.                                                                                         | 2.0 | 18        |
| 74 | Sexual conflict and cryptic female choice in the black field cricket, Teleogryllus commodus.<br>Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.                                                                                                                           | 1.1 | 18        |
| 75 | Meta-analysis can "fail†reply to Kotiaho and Tomkins. Oikos, 2004, 104, 191-193.                                                                                                                                                                                                                    | 1.2 | 17        |
| 76 | Genetic association between male attractiveness and female differential allocation. Biology Letters, 2006, 2, 341-344.                                                                                                                                                                              | 1.0 | 17        |
| 77 | Understanding the link between sexual selection, sexual conflict and aging using crickets as a model.<br>Experimental Gerontology, 2015, 71, 4-13.                                                                                                                                                  | 1.2 | 17        |
| 78 | The complex interplay between macronutrient intake, cuticular hydrocarbon expression and mating success in male decorated crickets. Journal of Evolutionary Biology, 2017, 30, 711-727.                                                                                                             | 0.8 | 17        |
| 79 | Longevity, calling effort, and metabolic rate in two populations of cricket. Behavioral Ecology and Sociobiology, 2011, 65, 1773-1778.                                                                                                                                                              | 0.6 | 16        |
| 80 | Balancing of specific nutrients and subsequent growth and body composition in the slug Arion lusitanicus. Physiology and Behavior, 2013, 122, 84-92.                                                                                                                                                | 1.0 | 16        |
| 81 | Multivariate sexual selection on male song structure in wild populations of sagebrush crickets,<br><i>Cyphoderris strepitans</i> (Orthoptera: Haglidae). Ecology and Evolution, 2013, 3, 3590-3603.                                                                                                 | 0.8 | 16        |
| 82 | Self-recognition in crickets via on-line processing. Current Biology, 2014, 24, R1117-R1118.                                                                                                                                                                                                        | 1.8 | 15        |
| 83 | Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant<br>Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation<br>in Australian Field Crickets (Teleogryllus commodus). Antioxidants, 2015, 4, 768-792. | 2.2 | 14        |
| 84 | Female agreement over male attractiveness is not affected by cost of mating with experienced males.<br>Behavioral Ecology, 2008, 19, 854-859.                                                                                                                                                       | 1.0 | 13        |
| 85 | Sexâ€specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans. Functional Ecology, 2015, 29, 562-569.                                                                                                                                       | 1.7 | 12        |
| 86 | Operational sex ratio and density predict the potential for sexual selection in the broad-horned beetle. Animal Behaviour, 2019, 152, 63-69.                                                                                                                                                        | 0.8 | 12        |
| 87 | Change in sex pheromone expression by nutritional shift in male cockroaches. Behavioral Ecology, 2017, 28, 1393-1401.                                                                                                                                                                               | 1.0 | 11        |
| 88 | Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. Journal of Evolutionary Biology, 2020, 33, 990-1005.                                                                                                                                   | 0.8 | 11        |
| 89 | Nutritional Geometry Provides Food for Thought. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 956-959.                                                                                                                                                    | 1.7 | 10        |
| 90 | The plasticity of phenotypic integration in response to light and water availability in the pepper grass,<br>Lepidium bonariense. Evolutionary Ecology, 2010, 24, 1321-1337.                                                                                                                        | 0.5 | 10        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Diet has independent effects on the pace and shape of aging in Drosophila melanogaster.<br>Biogerontology, 2018, 19, 1-12.                                                                            | 2.0 | 10        |
| 92  | Behavioural mechanisms of sexual isolation involving multiple modalities and their inheritance.<br>Journal of Evolutionary Biology, 2019, 32, 243-258.                                                | 0.8 | 10        |
| 93  | Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus. PLoS ONE, 2012, 7, e39631.                                                                                     | 1.1 | 9         |
| 94  | Maternal effects and maternal selection arising from variation in allocation of free amino acid to eggs. Ecology and Evolution, 2015, 5, 2397-2410.                                                   | 0.8 | 8         |
| 95  | The troublesome gift: The spermatophylax as a purveyor of sexual conflict and coercion in crickets.<br>Advances in the Study of Behavior, 2019, 51, 1-30.                                             | 1.0 | 8         |
| 96  | Macronutrient intake and simulated infection threat independently affect life history traits of male decorated crickets. Ecology and Evolution, 2020, 10, 11766-11778.                                | 0.8 | 8         |
| 97  | Confidence regions for the location of response surface optima: the R package OptimaRegion.<br>Communications in Statistics Part B: Simulation and Computation, 2020, , 1-21.                         | 0.6 | 8         |
| 98  | What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket. PLoS ONE, 2015, 10, e0140191.                                                                                     | 1.1 | 8         |
| 99  | Active and Covert Infections of Cricket Iridovirus and Acheta domesticus Densovirus in Reared Gryllodes sigillatus Crickets. Frontiers in Microbiology, 2021, 12, 780796.                             | 1.5 | 8         |
| 100 | Inbreeding alters contextâ€dependent reproductive effort and immunity in male crickets. Journal of<br>Evolutionary Biology, 2019, 32, 731-741.                                                        | 0.8 | 7         |
| 101 | Viability selection on female fly finery in the wild. Biological Journal of the Linnean Society, 2015, 116, 530-540.                                                                                  | 0.7 | 6         |
| 102 | Multivariate stabilizing sexual selection and the evolution of male and female genital morphology in the red flour beetle*. Evolution; International Journal of Organic Evolution, 2020, 74, 883-896. | 1.1 | 6         |
| 103 | Genotype-by-sex-by-diet interactions for nutritional preference, dietary consumption, and lipid deposition in a field cricket. Heredity, 2018, 121, 361-373.                                          | 1.2 | 5         |
| 104 | Effects of inbreeding on life-history traits and sexual competency in decorated crickets. Animal Behaviour, 2019, 155, 241-248.                                                                       | 0.8 | 5         |
| 105 | Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Functional Ecology, 2022, 36, 865-881.                                    | 1.7 | 5         |
| 106 | NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472.      | 1.1 | 4         |
| 107 | Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity, 2021, 126, 477-490.        | 1.2 | 4         |
| 108 | Genetic covariance in immune measures and pathogen resistance in decorated crickets is sex and pathogen specific. Journal of Animal Ecology, 2022, , .                                                | 1.3 | 4         |

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Sexual selection on the genital lobes of male <i>Drosophila simulans</i> . Evolution; International Journal of Organic Evolution, 2021, 75, 501-514. | 1.1 | 3         |
| 110 | The mother–in–law effect. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S61-3.                                                 | 1.2 | 2         |
| 111 | The Evolution of Parental Care in the Onthophagine Dung Beetles. , 2011, , 152-176.                                                                  |     | 2         |
| 112 | Evolution: Lending a Helping Hand in Sperm Competition?. Current Biology, 2007, 17, R90-R93.                                                         | 1.8 | 1         |
| 113 | Allowing nature to be nurture: a comment on Bailey et al Behavioral Ecology, 2018, 29, 16-17.                                                        | 1.0 | 1         |