Christopher J Rhodes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771251/publications.pdf

Version: 2024-02-01

48 2,678 24 42 papers citations h-index g-index

51 51 51 3595
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Pathobiology of Pulmonary Hypertension. , 2022, , 530-541.		О
2	Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1102-1111.	2.5	35
3	Autoimmunity Is a Significant Feature of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 81-93.	2.5	9
4	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	2.5	19
5	Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension. Circulation Research, 2022, 130, 1423-1444.	2.0	19
6	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	1.6	29
7	The application of â€~omics' to pulmonary arterial hypertension. British Journal of Pharmacology, 2021, 178, 108-120.	2.7	18
8	Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2021, 57, 2003201.	3.1	25
9	The pathophysiological role of novel pulmonary arterial hypertension gene <i>SOX17</i> . European Respiratory Journal, 2021, 58, 2004172.	3.1	16
10	NHLBI-CMREF Workshop Report on Pulmonary Vascular DiseaseÂClassification. Journal of the American College of Cardiology, 2021, 77, 2040-2052.	1.2	13
11	Supplementation with Iron in Pulmonary Arterial Hypertension. Two Randomized Crossover Trials. Annals of the American Thoracic Society, 2021, 18, 981-988.	1.5	28
12	Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 2021, 160, 1442-1458.	0.4	17
13	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	2.7	30
14	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	5.8	21
15	Immunoglobulin-driven Complement Activation Regulates Proinflammatory Remodeling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 224-239.	2.5	60
16	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	2.5	80
17	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	1.0	3
18	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	2.5	45

#	Article	IF	CITATIONS
19	Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nature Communications, 2020, 11, 1185.	5.8	52
20	Targeting Vessel Formation in Pulmonary Arterial Hypertension: Is the Endostatin–Id1–Thrombospondin 1 Pathway a New Hope?. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 411-412.	1.4	0
21	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	3.1	26
22	Plasma metabolomics in chronic thromboembolic pulmonary hypertension. , 2020, , .		1
23	Multi-omic profiling in pulmonary arterial hypertension. , 2020, , .		O
24	The ADAMTS13–VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2019, 53, 1801805.	3.1	31
25	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	3.1	31
26	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine, the, 2019, 7, 227-238.	5.2	122
27	Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 668-676.	0.5	13
28	Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension. Thorax, 2019, 74, 380-389.	2.7	34
29	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	2.3	69
30	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	5.8	279
31	Recent advances in pulmonary arterial hypertension. F1000Research, 2018, 7, 1128.	0.8	27
32	Metabolomic Insights in Pulmonary Arterial Hypertension. Advances in Pulmonary Hypertension, 2018, 17, 103-109.	0.1	2
33	Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology, 2017, 283, 381-390.	3.6	161
34	Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respiratory Medicine, the, 2017, 5, 717-726.	5.2	99
35	Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor- \hat{l}^2 in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1559-1569.	1.1	41
36	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111

#	Article	IF	CITATIONS
37	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
38	Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future., 2016, 164, 195-203.		37
39	In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug. Circulation, 2016, 133, 1783-1794.	1.6	183
40	$\hat{l}\pm 1$ -A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
41	<i>miR-21</i> /l>/DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochemical Journal, 2014, 462, 103-112.	1.7	45
42	Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1770-1780.	1.6	63
43	Reduced MicroRNA-150 Is Associated with Poor Survival in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 294-302.	2.5	153
44	Pulmonary Hypertension: Biomarkers. Handbook of Experimental Pharmacology, 2013, 218, 77-103.	0.9	5
45	Iron Deficiency and Raised Hepcidin in Idiopathic Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2011, 58, 300-309.	1.2	208
46	Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension. Heart, 2011, 97, 1054-1060.	1.2	154
47	Blood biomarkers. , 2011, , 146-158.		O
48	Therapeutic targets in pulmonary arterial hypertension. , 2009, 121, 69-88.		80