Robert C Schuit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771203/publications.pdf

Version: 2024-02-01

		394421	4	154955
52	1,045	19		30
papers	citations	h-index		g-index
53	53	53		1827
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Development of [11C]erlotinib Positron Emission Tomography for <i>In Vivo</i> Evaluation of EGF Receptor Mutational Status. Clinical Cancer Research, 2013, 19, 183-193.	7.0	117
2	89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget, 2015, 6, 30384-30393.	1.8	106
3	Quantification of [¹⁸ F]DPA-714 Binding in the Human Brain: Initial Studies in Healthy Controls and Alzheimer'S Disease Patients. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 766-772.	4.3	99
4	Identification of the allosteric P2X7 receptor antagonist $[11C]SMW139$ as a PET tracer of microglial activation. Scientific Reports, 2018, 8, 6580.	3.3	54
5	Quantification of Tau Load Using [18F]AV1451 PET. Molecular Imaging and Biology, 2017, 19, 963-971.	2.6	42
6	[18F]VM4-037 MicroPET Imaging and Biodistribution of Two In Vivo CAIX-Expressing Tumor Models. Molecular Imaging and Biology, 2015, 17, 615-619.	2.6	40
7	Development of [18F]afatinib as new TKI-PET tracer for EGFR positive tumors. Nuclear Medicine and Biology, 2014, 41, 749-757.	0.6	39
8	Quantification of ¹⁸ F-Fluorocholine Kinetics in Patients with Prostate Cancer. Journal of Nuclear Medicine, 2015, 56, 365-371.	5.0	32
9	Effects of erlotinib therapy on [11C]erlotinib uptake in EGFR mutated, advanced NSCLC. EJNMMI Research, 2016, 6, 10.	2.5	30
10	Development of carbon-11 labeled acryl amides for selective PET imaging of active tissue transglutaminase. Nuclear Medicine and Biology, 2016, 43, 232-242.	0.6	29
11	Use of a Single ¹¹ C- <i>Meta</i> Hydroxyephedrine Scan for Assessing Flow–Innervation Mismatches in Patients with Ischemic Cardiomyopathy. Journal of Nuclear Medicine, 2015, 56, 1706-1711.	5.0	27
12	[11C]Sorafenib: Radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nuclear Medicine and Biology, 2013, 40, 488-497.	0.6	24
13	Parametric Binding Images of the TSPO Ligand ¹⁸ F-DPA-714. Journal of Nuclear Medicine, 2016, 57, 1543-1547.	5.0	23
14	The Dopamine Stabilizer (\hat{a}^{-1})-OSU6162 Occupies a Subpopulation of Striatal Dopamine D2/D3 Receptors: An [11C]Raclopride PET Study in Healthy Human Subjects. Neuropsychopharmacology, 2015, 40, 472-479.	5.4	22
15	Quantitative and Simplified Analysis of ¹¹ C-Erlotinib Studies. Journal of Nuclear Medicine, 2016, 57, 861-866.	5.0	22
16	Quantification of [¹⁸ F]florbetapir: A testâ€"retest tracer kinetic modelling study. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2172-2180.	4.3	22
17	Parametric methods for [¹⁸ F]flortaucipir PET. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 365-373.	4.3	22
18	Preclinical evaluation of [18F]PK-209, a new PET ligand for imaging the ion-channel site of NMDA receptors. Nuclear Medicine and Biology, 2015, 42, 205-212.	0.6	21

#	Article	IF	CITATIONS
19	Quantification of the novel <i>N</i> -methyl- <scp>d</scp> -aspartate receptor ligand [¹¹ C]GMOM in man. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1111-1121.	4.3	19
20	A novel partial volume correction method for accurate quantification of [18F] flortaucipir in the hippocampus. EJNMMI Research, 2018, 8, 79.	2.5	19
21	Assessment of Simplified Methods to Measure ¹⁸ F-FLT Uptake Changes in EGFR-Mutated Nonâ€"Small Cell Lung Cancer Patients Undergoing EGFR Tyrosine Kinase Inhibitor Treatment. Journal of Nuclear Medicine, 2014, 55, 1417-1423.	5.0	17
22	Synthesis and preclinical evaluation of carbon-11 labelled N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine as a PET tracer for NR2B subunit-containing NMDA receptors. Nuclear Medicine and Biology, 2014, 41, 670-680.	0.6	15
23	PET imaging of P2X7R in the experimental autoimmune encephalomyelitis model of multiple sclerosis using [11C]SMW139. Journal of Neuroinflammation, 2020, 17, 300.	7.2	15
24	Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography. Bioorganic and Medicinal Chemistry, 2015, 23, 1189-1206.	3.0	14
25	Quantification of O-(2-[18F]fluoroethyl)-L-tyrosine kinetics in glioma. EJNMMI Research, 2018, 8, 72.	2.5	14
26	Parametric Methods for Quantification of 18F-FAZA Kinetics in Non–Small Cell Lung Cancer Patients. Journal of Nuclear Medicine, 2014, 55, 1772-1777.	5.0	12
27	Noninvasive Quantification of Myocardial ¹¹ C- <i>Meta</i> -Hydroxyephedrine Kinetics. Journal of Nuclear Medicine, 2016, 57, 1376-1381.	5.0	12
28	Two anti-angiogenic TKI-PET tracers, [11 C]axitinib and [11 C]nintedanib: Radiosynthesis, in vivo metabolism and initial biodistribution studies in rodents. Nuclear Medicine and Biology, 2016, 43, 612-624.	0.6	11
29	Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor. European Journal of Medicinal Chemistry, 2016, 118, 143-160.	5.5	10
30	Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [¹¹ C]AF150(S). Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 264-273.	1.0	9
31	Synthesis, radiolabeling and preclinical evaluation of a [11 C]GMOM derivative as PET radiotracer for the ion channel of the N-methyl-D-aspartate receptor. Nuclear Medicine and Biology, 2017, 51, 25-32.	0.6	9
32	First in human evaluation of [18F]PK-209, a PET ligand for the ion channel binding site of NMDA receptors. EJNMMI Research, 2018, 8, 69.	2.5	9
33	Altered GABA _A receptor density and unaltered blood–brain barrier [¹¹ C]flumazenil transport in drug-resistant epilepsy patients with mesial temporal sclerosis. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 97-105.	4.3	8
34	Synthesis and Evaluation of New Fluorine-18 Labeled Verapamil Analogs To Investigate the Function of P-Glycoprotein in the Blood–Brain Barrier. ACS Chemical Neuroscience, 2017, 8, 1925-1936.	3.5	8
35	Development of fluorine-18 labeled peptidic PET tracers for imaging active tissue transglutaminase. Nuclear Medicine and Biology, 2017, 44, 90-104.	0.6	8
36	Open study with (â^')-OSU6162 in multiple sclerosis-related fatigue. Acta Neurologica Scandinavica, 2018, 138, 482-489.	2.1	8

#	Article	IF	CITATIONS
37	Evaluation of the Novel PET Tracer [11C]HACH242 for Imaging the GluN2B NMDA Receptor in Non-Human Primates. Molecular Imaging and Biology, 2019, 21, 676-685.	2.6	8
38	Effect of the monoaminergic stabiliser (â^')-OSU6162 on mental fatigue following stroke or traumatic brain injury. Acta Neuropsychiatrica, 2020, 32, 303-312.	2.1	7
39	Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts. Oncotarget, 2017, 8, 38337-38350.	1.8	7
40	Quantification of ¹¹ C-Laniquidar Kinetics in the Brain. Journal of Nuclear Medicine, 2015, 56, 1730-1735.	5.0	5
41	In vivo evaluation of two tissue transglutaminase PET tracers in an orthotopic tumour xenograft model. EJNMMI Research, 2018, 8, 39.	2.5	5
42	Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18F]4FIMPTC) as a novel PET tracer of P-glycoprotein expression. EJNMMI Radiopharmacy and Chemistry, 2018, 3, 11.	3.9	4
43	Impact of New Scatter Correction Strategies on High-Resolution Research Tomograph Brain PET Studies. Molecular Imaging and Biology, 2016, 18, 627-635.	2.6	3
44	Human Dosimetry of the <i>N</i> -Methyl-d-Aspartate Receptor Ligand ¹¹ C-GMOM. Journal of Nuclear Medicine, 2017, 58, 1330-1333.	5.0	2
45	ImmunoPET imaging with 89Zr-cetuximab in patients with advanced colorectal cancer Journal of Clinical Oncology, 2014, 32, 11102-11102.	1.6	2
46	Synthesis and Preclinical Evaluation of the First Carbon-11 Labeled PET Tracers Targeting Substance P _{1–7} . Molecular Pharmaceutics, 2018, 15, 4872-4883.	4.6	1
47	ICâ€Pâ€196: Quantification of TAU Load Using [¹⁸ F]AVâ€1451 and PET. Alzheimer's and Dementia, 2016, 12, P141.	0.8	О
48	P4â€215: Quantification of Tau Load Using [¹⁸ F]AVâ€1451 and Pet. Alzheimer's and Dementia, 2016, 12, P1109.	0.8	0
49	[P4–235]: PARAMETRIC IMAGING OF TAU LOAD IN ALZHEIMER's PATIENTS AND CONTROLS USING FLORTAUCIPIR. Alzheimer's and Dementia, 2017, 13, P1364.	0.8	O
50	[ICâ€Pâ€206]: PARAMETRIC IMAGING OF TAU LOAD IN ALZHEIMER's PATIENTS AND CONTROLS USING FLORTAUCIPIR. Alzheimer's and Dementia, 2017, 13, P150.	0.8	0
51	P3â€438: PARAMETRIC IMAGING OF [¹⁸ F]FLORBETAPIR: A TESTâ€RETEST STUDY IN HEALTHY SUBJE AND PATIENTS WITH ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1281.	CJŞ	O
52	11C-sorafenib and 15O-H2O PET for early evaluation of sorafenib therapy. Journal of Nuclear Medicine, 2020, 62, jnumed.120.251611.	5.0	0