Liraz Larush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4770818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4D Multimaterial Printing of Programmable and Selective Lightâ€Activated Shapeâ€Memory Structures with Embedded Gold Nanoparticles. Advanced Materials Technologies, 2022, 7, 2101058.	3.0	16
2	Metallic core-shell nanoparticles for conductive coatings and printing. Advances in Colloid and Interface Science, 2022, 299, 102578.	7.0	25
3	Wood Warping Composite by 3D Printing. Polymers, 2022, 14, 733.	2.0	5
4	Two-dimensional mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters as nanozymes for the electrochemical detection of superoxide anions in HepG2 cells. Biosensors and Bioelectronics, 2022, 209, 114229.	5.3	27
5	3D Printing Materials for Soft Robotics. Advanced Materials, 2021, 33, e2003387.	11.1	173
6	Effective Oral Administration of an Antitumorigenic Nanoformulated Titanium Complex. ChemMedChem, 2021, 16, 108-112.	1.6	12
7	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
8	Quantum Photoinitiators: Toward Emerging Photocuring Applications. Journal of the American Chemical Society, 2021, 143, 577-587.	6.6	28
9	3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 2021, 7, .	4.7	233
10	3D-printed self-healing hydrogels via Digital Light Processing. Nature Communications, 2021, 12, 2462.	5.8	122
11	3D Printing of Cellulose Nanocrystal-Loaded Hydrogels through Rapid Fixation by Photopolymerization. Langmuir, 2021, 37, 6451-6458.	1.6	21
12	Particle-free compositions for printing dense 3D ceramic structures by digital light processing. Virtual and Physical Prototyping, 2021, 16, 255-266.	5.3	8
13	Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS Applied Materials & Interfaces, 2021, 13, 30524-30532.	4.0	29
14	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2103807.	7.8	11
15	Dual Role of Cuâ€Chalcogenide as Holeâ€Transporting Layer and Interface Passivator for p–i–n Architecture Perovskite Solar Cell (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170282.	7.8	1
16	Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators. Nature Communications, 2021, 12, 6080.	5.8	23
17	Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module. Advanced Energy Materials, 2021, 11, 2102276.	10.2	11
18	Pre-Programmed Tri-Layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. Soft Robotics, 2020, 7, 123-129.	4.6	33

#	Article	IF	CITATIONS
19	Fabrication of Selfâ€Cleaning CNTâ€Based Nearâ€Perfect Solar Absorber Coating for Nonâ€Evacuated Concentrated Solar Power Applications. Energy Technology, 2020, 8, 2000699.	1.8	8
20	3D Printing: 3D Printing of Micrometerâ€6ized Transparent Ceramics with Onâ€Demand Opticalâ€Gain Properties (Adv. Mater. 28/2020). Advanced Materials, 2020, 32, 2070212.	11.1	0
21	Fabrication of Second Skin from Keratin and Melanin. Polymers, 2020, 12, 2568.	2.0	4
22	3D Printing of Ordered Mesoporous Silica Complex Structures. Nano Letters, 2020, 20, 6598-6605.	4.5	30
23	High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts, 2020, 10, 840.	1.6	16
24	3D Printing of Micrometerâ€Sized Transparent Ceramics with Onâ€Demand Opticalâ€Gain Properties. Advanced Materials, 2020, 32, e2001675.	11.1	40
25	4D Printed Hydrogels: 4D Printed Hydrogels: Fabrication, Materials, and Applications (Adv. Mater.) Tj ETQq1 1 0.7	784314 rg 3.0	BT ₂ /Overlock
26	Smart Windows: 3D Printed Smart Windows for Adaptive Solar Modulations (Advanced Optical) Tj ETQq0 0 0 rg	BT /Qverlo	ck_10 Tf 50 4
27	Three-Layered Design of Electrothermal Actuators for Minimal Voltage Operation. Soft Robotics, 2020, 7, 649-662.	4.6	7
28	Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light. Polymers, 2020, 12, 710.	2.0	34
29	3D Printed Smart Windows for Adaptive Solar Modulations. Advanced Optical Materials, 2020, 8, 200013.	3.6	28
30	Over 6% Efficient Cu(In,Ga)Se ₂ Solar Cell Screen-Printed from Oxides on Fluorine-Doped Tin Oxide. ACS Applied Energy Materials, 2020, 3, 3120-3126.	2.5	13
31	4D Printed Hydrogels: Fabrication, Materials, and Applications. Advanced Materials Technologies, 2020, 5, 2000034.	3.0	75
32	Synthesis through 3D printing: formation of 3D coordination polymers. RSC Advances, 2020, 10, 14812-14817.	1.7	17
33	A New Approach to 3D Printing Dense Ceramics by Ceramic Precursor Binders. Advanced Engineering Materials, 2019, 21, 1900604.	1.6	30
34	Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer. Scientific Reports, 2019, 9, 8566.	1.6	7
35	3D Printed Ferrofluid Based Soft Actuators. , 2019, , .		5

Efficient Near Infrared Modulation with High Visible Transparency Using 36 SnO₂–WO₃ Nanostructure for Advanced Smart Windows. Advanced Optical 3.6 38 Materials, 2019, 7, 1801389.

#	Article	IF	CITATIONS
37	A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization. Nanoscale, 2019, 11, 11209-11216.	2.8	19
38	Additive Manufacturing of 3D Structures Composed of Wood Materials. Advanced Materials Technologies, 2019, 4, 1900158.	3.0	32
39	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	0.9	43
40	Electrochemical detection of superoxide anions in HeLa cells by using two enzyme-free sensors prepared from ZIF-8-derived carbon nanomaterials. Mikrochimica Acta, 2019, 186, 370.	2.5	15
41	Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3Dâ€Printed "GeminiChip― Advanced Materials, 2019, 31, e1900514.	11.1	12
42	Electrochromic Materials: Efficient Near Infrared Modulation with High Visible Transparency Using SnO 2 –WO 3 Nanostructure for Advanced Smart Windows (Advanced Optical Materials 8/2019). Advanced Optical Materials, 2019, 7, 1970031.	3.6	1
43	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	7.8	35
44	Self-Assembled VO ₂ Mesh Film-Based Resistance Switches with High Transparency and Abrupt ON/OFF Ratio. ACS Omega, 2019, 4, 19635-19640.	1.6	9
45	Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 2019, 4, 1800426.	3.0	23
46	Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves. Journal of Colloid and Interface Science, 2019, 536, 701-709.	5.0	48
47	Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink. MRS Advances, 2018, 3, 261-267.	0.5	0
48	Binuclear Copper Complex Ink as a Seed for Electroless Copper Plating Yielding >70% Bulk Conductivity on 3DÂPrinted Polymers. Advanced Materials Interfaces, 2018, 5, 1701285.	1.9	19
49	Metal Organic Framework: Hydrolytically Stable MOF in 3Dâ€Printed Structures (Adv. Sustainable Syst.) Tj ETQq	1 1 0.784 2.7	314 rgBT /O
50	Fully Printed Flexible Smart Hybrid Hydrogels. Advanced Functional Materials, 2018, 28, 1705365.	7.8	121
51	Hydrolytically Stable MOF in 3Dâ€Printed Structures. Advanced Sustainable Systems, 2018, 2, 1700150.	2.7	54
52	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	4.0	25
53	A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosensors and Bioelectronics, 2018, 102, 365-371.	5.3	48
54	Surface engineering on continuous VO2 thin films to improve thermochromic properties: Top-down acid etching and bottom-up self-patterning. Journal of Colloid and Interface Science, 2018, 512, 529-535.	5.0	27

#	Article	IF	CITATIONS
55	Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technology, 2018, 6, 33-45.	1.8	155
56	Micrometer to 15 nm Printing of Metallic Inks with Fountain Pen Nanolithography. Small, 2018, 14, 1702324.	5.2	15
57	Optimization of liposomal indocyanine green for imaging of the urinary pathways and a proof of concept in a pig model. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 963-970.	1.3	12
58	Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.	5.2	21
59	Hybrid Materials for Functional 3D Printing. Advanced Materials Interfaces, 2018, 5, 1800996.	1.9	42
60	Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Materials Horizons, 2018, 5, 708-714.	6.4	53
61	3D Printed Bioelectronic Platform with Embedded Electronics. MRS Advances, 2018, 3, 3011-3017.	0.5	8
62	Novel Materials for 3D Printing by Photopolymerization. Advanced Materials, 2018, 30, e1706344.	11.1	367
63	3D Printings: Binuclear Copper Complex Ink as a Seed for Electroless Copper Plating Yielding >70% Bulk Conductivity on 3DÂPrinted Polymers (Adv. Mater. Interfaces 8/2018). Advanced Materials Interfaces, 2018, 5, 1870038.	1.9	0
64	Additive Manufacturing of Transparent Silica Glass from Solutions. ACS Applied Materials & Interfaces, 2018, 10, 18879-18885.	4.0	97
65	Conductivity Enhancement of Transparent 2D Carbon Nanotube Networks Occurs by Resistance Reduction in All Junctions. Journal of Physical Chemistry C, 2018, 122, 14872-14876.	1.5	14
66	Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates. ACS Applied Materials & Interfaces, 2017, 9, 8766-8773.	4.0	67
67	Intraoperative Localization of Rectal Tumors Using Liposomal Indocyanine Green. Surgical Innovation, 2017, 24, 139-144.	0.4	7
68	Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light. ACS Omega, 2017, 2, 573-581.	1.6	36
69	Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials, 2017, 29, 1606000.	11.1	480
70	Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators. Nano Letters, 2017, 17, 4497-4501.	4.5	83
71	Hydroprinting Conductive Patterns onto 3D Structures. Advanced Materials Technologies, 2017, 2, 1600289.	3.0	58
72	Fully functional semi-transparent perovskite solar cell fabricated in ambient air. Sustainable Energy and Fuels, 2017, 1, 2120-2127.	2.5	27

#	Article	IF	CITATIONS
73	Continues administration of Nano-PSO significantly increased survival of genetic CJD mice. Neurobiology of Disease, 2017, 108, 140-147.	2.1	15
74	Highly Selective Solar Thermal Sprayable Coating Based on Carbon Nanotubes. Solar Rrl, 2017, 1, 1700080.	3.1	10
75	Ti-Doped WO ₃ synthesized by a facile wet bath method for improved electrochromism. Journal of Materials Chemistry C, 2017, 5, 9995-10000.	2.7	43
76	Hydrothermal Synthesis of VO ₂ Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small, 2017, 13, 1701147.	5.2	262
77	Printed Electronics: Hydroprinting Conductive Patterns onto 3D Structures (Adv. Mater. Technol.) Tj ETQq1 1 0.	784314 rg 3.0	gBT /Overlock
78	Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns. ACS Applied Materials & Interfaces, 2017, 9, 44214-44221.	4.0	57
79	Ionic strength induced electrodeposition: a universal approach for nanomaterial deposition at selective areas. Nanoscale, 2017, 9, 485-490.	2.8	32
80	Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria. Theranostics, 2016, 6, 167-176.	4.6	22
81	3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4449-4454.	11.1	702
82	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	10.2	391
83	3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater.) Tj ETQq1 1 0.73	84314.rgB 11.1	T /Qyerlock 1
84	Supercapacitors: Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	10.2	2
85	A mesoporous–planar hybrid architecture of methylammonium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 14423-14429.	5.2	17
86	Electroâ€Thermochromic Devices Composed of Selfâ€Assembled Transparent Electrodes and Hydrogels. Advanced Materials Technologies, 2016, 1, 1600069.	3.0	56
87	Periodic micro-patterned VO ₂ thermochromic films by mesh printing. Journal of Materials Chemistry C, 2016, 4, 8385-8391.	2.7	68
88	Two-Dimensional SiO ₂ /VO ₂ Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment. ACS Applied Materials & Interfaces, 2016, 8, 33112-33120.	4.0	153
89	Additive manufacturing of micrometric crystallization vessels and single crystals. Scientific Reports, 2016, 6, 36786.	1.6	3
90	High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science Advances, 2016, 2, e1501381.	4.7	191

#	Article	IF	CITATIONS
91	4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual and Physical Prototyping, 2016, 11, 263-270.	5.3	101
92	Bioâ€Inspired Mechanotactic Hybrids for Orchestrating Tractionâ€Mediated Epithelial Migration. Advanced Materials, 2016, 28, 3102-3110.	11.1	66
93	Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1335-1345.	1.7	25
94	Inkjet-printed all solid-state electrochromic devices based on NiO/WO ₃ nanoparticle complementary electrodes. Nanoscale, 2016, 8, 348-357.	2.8	157
95	The Environmentally Benign form of Pesticide in Hydrodispersive Nanometric form with Improved Efficacy Against Adult Mosquitoes at Low Exposure Concentrations. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 734-739.	1.3	15
96	Fabrication of Carbon Nanotube/Indium Tin Oxide "Inverse Tandem―Absorbing Coatings with Tunable Spectral Selectivity for Solar–Thermal Applications. Energy Technology, 2015, 3, 1045-1050.	1.8	10
97	Selfâ€Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500118.	1.9	61
98	Antimicrobial activity of bone cements embedded with organic nanoparticles. International Journal of Nanomedicine, 2015, 10, 6317.	3.3	16
99	Highly Stable Tetra-Phenolato Titanium(IV) Agent Formulated into Nanoparticles Demonstrates Anti-Tumoral Activity and Selectivity. Molecules, 2015, 20, 18526-18538.	1.7	21
100	Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. International Journal of Nanomedicine, 2015, 10, 7165.	3.3	32
101	Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. Journal of Materials Chemistry C, 2015, 3, 6771-6777.	2.7	142
102	Novel felt pseudocapacitor based on carbon nanotube/metal oxides. Journal of Materials Science, 2015, 50, 6578-6585.	1.7	8
103	Fabrication of transparent conducting films composed of In3+ doped CuS and their application in flexible electroluminescent devices. Journal of Materials Chemistry C, 2015, 3, 8700-8705.	2.7	12
104	Imaging the urinary pathways in mice by liposomal indocyanine green. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1057-1064.	1.7	23
105	Multienzyme Inkjet Printed 2D Arrays. ACS Applied Materials & Interfaces, 2015, 7, 17985-17992.	4.0	23
106	Printing a Selfâ€Reducing Copper Precursor on 2D and 3D Objects to Yield Copper Patterns with 50% Copper's Bulk Conductivity. Advanced Materials Interfaces, 2015, 2, 1400448.	1.9	25
107	Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1353-1363.	1.7	75
108	Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nature Communications, 2014, 5, 2994.	5.8	61

#	Article	IF	CITATIONS
109	Simulation and prediction of the thermal sintering behavior for a silver nanoparticle ink based on experimental input. Journal of Materials Chemistry C, 2014, 2, 6342-6352.	2.7	19
110	Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions. Journal of Colloid and Interface Science, 2014, 434, 65-70.	5.0	36
111	"Nano to nano―electrodeposition of WO ₃ crystalline nanoparticles for electrochromic coatings. Journal of Materials Chemistry A, 2014, 2, 16224-16229.	5.2	81
112	Low pressure mediated enhancement of nanoparticle and macromolecule loading into porous silicon structures. Open Material Sciences, 2014, 1, .	0.8	4
113	Aqueous solution synthesis of (Sb, Bi)2(Te, Se)3 nanocrystals with controllable composition and morphology. Journal of Materials Chemistry C, 2013, 1, 6271.	2.7	16
114	UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. Journal of Materials Chemistry C, 2013, 1, 3244.	2.7	43
115	Self-assembled polymer layers of linear polyethylenimine for enhancing electrochromic cycling stability. Journal of Materials Chemistry C, 2013, 1, 3651.	2.7	14
116	Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. Journal of Materials Chemistry, 2012, 22, 14349.	6.7	70
117	Rücktitelbild: High Antitumor Activity of Highly Resistant Salan-Titanium(IV) Complexes in Nanoparticles: An Identified Active Species (Angew. Chem. 42/2012). Angewandte Chemie, 2012, 124, 10828-10828.	1.6	0
118	Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. Journal of Materials Chemistry, 2011, 21, 15378.	6.7	114
119	Conductive Inks with a "Built-In―Mechanism That Enables Sintering at Room Temperature. ACS Nano, 2011, 5, 3354-3359.	7.3	294
120	Polyurea nanocapsules obtained from nanoâ€emulsions prepared by the phase inversion temperature method. Polymers for Advanced Technologies, 2011, 22, 2469-2473.	1.6	11
121	Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability. Materials, 2010, 3, 4626-4638.	1.3	346
122	Triggering the Sintering of Silver Nanoparticles at Room Temperature. ACS Nano, 2010, 4, 1943-1948.	7.3	447
123	Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. Journal of Nanoparticle Research, 2009, 11, 713-716.	0.8	69
124	Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009, 19, 3057.	6.7	298
125	A new method for preparation of poly-lauryl acrylate nanoparticles from nanoemulsions obtained by the phase inversion temperature process. Polymers for Advanced Technologies, 2007, 18, 705-711.	1.6	37
126	Ink-Jet Printing of Metallic Nanoparticles and Microemulsions. Macromolecular Rapid Communications, 2005, 26, 281-288.	2.0	202

Liraz Larush

#	Article	IF	CITATIONS
127	Size-Discriminative Self-Assembly of Nanospheres in Evaporating Drops. Journal of Physical Chemistry B, 2004, 108, 8-10.	1.2	72
128	Patterning of Organic Nanoparticles by Ink-jet Printing of Microemulsions. Langmuir, 2003, 19, 939-942.	1.6	62
129	Photostabilization of an Entomopathogenic Fungus Using Composite Clay Matrices¶. Photochemistry and Photobiology, 2003, 77, 180-185.	1.3	4
130	Chemiluminescence in Microemulsions:  Effect of Phase Composition. Langmuir, 1996, 12, 3759-3762.	1.6	11
131	FORMATION OF OIL IN GLYCEROIVWATER EMULSIONS: EFFECT OF SURFACTANT ETHYLENE OXIDE CONTENT. Journal of Dispersion Science and Technology, 1990, 11, 519-528.	1.3	7
132	Effect of Electrolytes, Stirring and Surfactants in the Coacervation and Microencapsulation Processes in Presence of Gelatin. Journal of Microencapsulation, 1989, 6, 515-526.	1.2	17
133	Hot Dipping Post Treatment for Improved Efficiency in Micro Patterned Semitransparent Perovskite Solar Cell. , 0, , .		0
134	Holistic Approach Towards Fully Semi-transparent 21 cm2 Perovskite Solar Module with 9.5% Efficiency. , 0, , .		0