
Lucia D'Accolti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4770472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new expeditious synthesis of the core scaffold of salvianolic acid F trough a one-pot sequential Heck coupling catalyzed by palladium nanoparticles in ionic liquids. Journal of Organometallic Chemistry, 2022, 958, 122193.	1.8	3
2	Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners. Coatings, 2022, 12, 361.	2.6	0
3	Steel slag as low-cost catalyst for artificial photosynthesis to convert CO2 and water into hydrogen and methanol. Scientific Reports, 2022, 12, .	3.3	6
4	Concerning Synthesis of New Biobased Polycarbonates with Curcumin in Replacement of Bisphenol A and Recycled Diphenyl Carbonate as Example of Circular Economy. Polymers, 2021, 13, 361.	4.5	8
5	Steel Slag as New Catalyst for the Synthesis of Fames from Soybean Oil. Catalysts, 2021, 11, 619.	3.5	5
6	Valorization of cigarette butts for synthesis of levulinic acid as top value-added chemicals. Scientific Reports, 2021, 11, 15775.	3.3	10
7	A selective cellulose/hemicellulose green solvents extraction from buckwheat chaff. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100094.	2.6	4
8	Insights into Pinacol Rearrangement: Oxidative versus Acid atalyzed Mechanism. ChemistrySelect, 2021, 6, 10238-10242.	1.5	0
9	Ionicâ€Liquid Controlled Nitration of Double Bond: Highly Selective Synthesis of Nitrostyrenes and Benzonitriles. European Journal of Organic Chemistry, 2020, 2020, 6012-6018.	2.4	4
10	Atmospheric pressure plasma treatment of polyurethane foams with He–O2 fed dielectric barrier discharges. Surfaces and Interfaces, 2020, 20, 100600.	3.0	12
11	Deep Control of Linear Oligomerization of Glycerol Using Lanthanum Catalyst on Mesoporous Silica Gel. Catalysts, 2020, 10, 1170.	3.5	7
12	One-pot synthesis of ZnO nanoparticles supported on halloysite nanotubes for catalytic applications. Applied Clay Science, 2020, 189, 105527.	5.2	61
13	Preparation of Biowax Esters in Continuous Flow Conditions. ACS Omega, 2019, 4, 12286-12292.	3.5	5
14	Frontispiece: Continued Progress towards Efficient Functionalization of Natural and Nonâ€natural Targets under Mild Conditions: Oxygenation by Câ^'H Bond Activation with Dioxirane. Chemistry - A European Journal, 2019, 25, .	3.3	0
15	ZnO/Ionic Liquid Catalyzed Biodiesel Production from Renewable and Waste Lipids as Feedstocks. Catalysts, 2019, 9, 71.	3.5	24
16	Continued Progress towards Efficient Functionalization of Natural and Nonâ€natural Targets under Mild Conditions: Oxygenation by Câ^'H Bond Activation with Dioxirane. Chemistry - A European Journal, 2019, 25, 12003-12017.	3.3	17
17	Hydrogenolysis of Dinuclear PCN R Ligated Pd II μâ€Hydroxides and Their Mononuclear Pd II Hydroxide Analogues. Chemistry - A European Journal, 2019, 25, 9920-9929.	3.3	5
18	Dioxomolybdenum(VI) Complexes with Salicylamide Ligands: Synthesis, Structure, and Catalysis in the Epoxidation of Olefins under Eco-Friendly Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 221-229.	2.0	10

#	Article	IF	CITATIONS
19	Green Procedure for One-Pot Synthesis of Azelaic Acid Derivatives Using Metal Catalysis. Recent Innovations in Chemical Engineering, 2019, 11, 185-191.	0.4	2
20	TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2ÂPhotoreduction. Materials, 2018, 11, 307.	2.9	11
21	Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation. Nanomaterials, 2018, 8, 78.	4.1	32
22	Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials, 2018, 8, 137.	4.1	8
23	Methanolysis of epoxidized soybean oil in continuous flow conditions. Industrial Crops and Products, 2017, 109, 1-7.	5.2	8
24	Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: Nâ^'H versus Câ^'H Switch in the Oxidation of Lactams by Dioxirans. Chemistry - A European Journal, 2017, 23, 259-262.	3.3	21
25	Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials, 2017, 10, 848.	2.9	13
26	One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl2O2 Catalysis. Molecules, 2017, 22, 333.	3.8	19
27	Heterogenization of Ketone Catalyst for Epoxidation by Low Pressure Plasma Fluorination of Silica Gel Supports. Molecules, 2017, 22, 2099.	3.8	4
28	Evaluating the NOx Storage Catalysts (NSC) Aging: A Preliminary Analytical Study with Electronic Microscopy. Applied Sciences (Switzerland), 2017, 7, 1059.	2.5	0
29	Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C ₈ H ₈ . Journal of Physical Chemistry A, 2016, 120, 4418-4428.	2.5	6
30	Ab-initio Investigation of Unexpected Aspects of Hydroxylation of Diketopiperazines by Reaction with Dioxiranes. Communications in Computer and Information Science, 2016, , 139-145.	0.5	0
31	Dioxirane-mediated Metal-free Oxidations of Target Molecules Containing Unsaturated Carbons. Current Organic Chemistry, 2015, 19, 45-61.	1.6	9
32	Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes. Molecules, 2015, 20, 396-415.	3.8	51
33	Epoxidation of Multiâ€Walled Carbon Nanotubes by Organocatalytic Oxidation. European Journal of Organic Chemistry, 2015, 2015, 3063-3068.	2.4	10
34	Synthesis and Biological Evaluation of a Valinomycin Analog Bearing a Pentafluorophenyl Active Ester Moiety. Journal of Organic Chemistry, 2015, 80, 12646-12650.	3.2	4
35	One-Pot Synthesis of Azobenzene Derivatives by Oxidation of 2,3-Dihydrobenzothiadiazines. Synthesis, 2014, 46, 962-966.	2.3	3
36	Reactivity of 1,3-dimethylimidazolium-2-carboxylate with dimethylcarbonate at high temperature: Unexpected 2-ethyl-functionalisation of the imidazolium moiety and employment of the NHC-CO2/dimethylcarbonate system in a base promoted reaction. Catalysis Communications, 2014, 46, 94-97.	3.3	4

#	Article	IF	CITATIONS
37	Tunable Epoxidation of Singleâ€Walled Carbon Nanotubes by Isolated Methyl(trifluoromethyl)dioxirane. European Journal of Organic Chemistry, 2014, 2014, 1666-1671.	2.4	23
38	A new synthetic approach to oxidation organocatalysts supported on Merrifield resin using plasma-enhanced chemical vapor deposition. Applied Catalysis A: General, 2014, 470, 132-139.	4.3	10
39	Sustainable Preparation of Cardanol-Based Nanocarriers with Embedded Natural Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2014, 2, 1299-1304.	6.7	31
40	Stereoselective Epoxidation of Cyclic Dienes and Trienes by Dioxiranes. Journal of Heterocyclic Chemistry, 2014, 51, 1482-1486.	2.6	3
41	Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Applied Catalysis A: General, 2014, 481, 169-172.	4.3	44
42	Oxidation-proof microemulsions: Microstructure and reactivity in the presence of dioxiranes. Journal of Colloid and Interface Science, 2013, 408, 138-144.	9.4	9
43	Siteâ€dependent biological activity of valinomycin analogs bearing derivatizable hydroxyl sites. Journal of Peptide Science, 2013, 19, 751-757.	1.4	21
44	Oxidative cleavage of lactams in water using dioxiranes: an expedient and environmentally-safe route to ω-nitro acids. Tetrahedron Letters, 2013, 54, 515-517.	1.4	20
45	Antitumor Potential of Conjugable Valinomycins Bearing Hydroxyl Sites: In Vitro Studies. ACS Medicinal Chemistry Letters, 2013, 4, 1189-1192.	2.8	22
46	Direct Synthesis of ESBO Derivatives- ¹⁸ O Labelled with Dioxirane. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	1
47	First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion. Molecules, 2012, 17, 12252-12261.	3.8	27
48	Dioxiraneâ€Mediated Heterogeneous Epoxidations with Potassium Caroate: A Solid Catalyst Bearing Anchored Ketone Moieties. European Journal of Organic Chemistry, 2012, 2012, 4616-4621.	2.4	21
49	MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chemistry, 2012, 134, 1192-1198.	8.2	93
50	Selective Synthesis of Hydroxy Analogues of Valinomycin using Dioxiranes. Organic Letters, 2011, 13, 5096-5099.	4.6	23
51	Selective Hydroxylation of Methane by Dioxiranes under Mild Conditions. Organic Letters, 2011, 13, 2142-2144.	4.6	21
52	Concerning Selectivity in the Oxidation of Peptides by Dioxiranes. Further Insight into the Effect of Carbamate Protecting Groups. Journal of Organic Chemistry, 2010, 75, 4812-4816.	3.2	26
53	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 6. On the Selective Hydroxylation of Cubane. Organic Letters, 2009, 11, 3574-3577.	4.6	16
54	Oxidation of natural targets by dioxiranes. Part 6: on the direct regio- and site-selective oxyfunctionalization of estrone and of 5α-androstane steroid derivatives. Tetrahedron Letters, 2008, 49, 5614-5617.	1.4	10

#	Article	IF	CITATIONS
55	Concerning the Reactivity of Dioxiranes. Observations from Experiments and Theory. Journal of the American Chemical Society, 2008, 130, 1197-1204.	13.7	32
56	Stereoselective dioxirane hydroxylations and the synthesis of tripod boronic acid esters. Tetrahedron Letters, 2007, 48, 3575-3578.	1.4	7
57	Occupational contact dermatitis to a limonene-based solvent in a histopathology technician. Contact Dermatitis, 2007, 56, 109-112.	1.4	12
58	A Novel Approach to the Efficient Oxygenation of Hydrocarbons under Mild Conditions. Superior Oxo Transfer Selectivity Using Dioxiranes. Accounts of Chemical Research, 2006, 39, 1-9.	15.6	159
59	Laser desorption/ionization time-of-flight mass spectrometry of squalene in oil samples. Rapid Communications in Mass Spectrometry, 2006, 20, 325-327.	1.5	24
60	Direct regio- and stereoselective synthesis of squalene 2,3;22,23-dioxide using dioxiranes. Tetrahedron Letters, 2005, 46, 8459-8462.	1.4	21
61	Aminium Hexachloroantimonate Salts as Latent Sources of Antimony Pentachloride in Pinacolic Rearrangement of Vicinal Diols. European Journal of Organic Chemistry, 2005, 2005, 1597-1603.	2.4	16
62	Selective Oxidation of Acetylenic 1,4-Diols with Dioxiranes in Comparison with the Methyltrioxorhenium?Hydrogen Peroxide Oxidant ChemInform, 2005, 36, no.	0.0	0
63	Concerning the Efficient Conversion of Epoxy Alcohols into Epoxy Ketones Using Dioxiranes ChemInform, 2005, 36, no.	0.0	0
64	Aminium Hexachloroantimonate Salts as Latent Sources of Antimony Pentachloride in Pinacolic Rearrangement of Vicinal Diols ChemInform, 2005, 36, no.	0.0	0
65	Effect of Cyclodextrins on the Physicochemical Properties of Chlorophyllain Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1313-1317.	2.6	21
66	Selective oxidation of acetylenic 1,4-diols with dioxiranes in comparison with the methyltrioxorhenium–hydrogen peroxide oxidant. Tetrahedron Letters, 2004, 45, 8575-8578.	1.4	11
67	Concerning the Efficient Conversion of Epoxy Alcohols into Epoxy Ketones Using Dioxiranes. Journal of Organic Chemistry, 2004, 69, 8510-8513.	3.2	27
68	Stereoselective Synthesis of Tetrasubstituted 2,3-Dihydrofurans by One-Step Cyclization of β-Ketosulfides of Benzothiazole and Aldehydes in Ionic Liquids ChemInform, 2003, 34, no.	0.0	0
69	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 5. Selective Oxidation of Hydrocarbons Bearing Cyclopropyl Moieties1. Journal of Organic Chemistry, 2003, 68, 7806-7810.	3.2	35
70	Stereoselective Synthesis of Tetrasubstituted 2,3-Dihydrofurans by One-Step Cyclization of β-Ketosulfides of Benzothiazole and Aldehydes in Ionic Liquids. Journal of Organic Chemistry, 2003, 68, 4406-4409.	3.2	35
71	Concerning Synthesis of Ring-A Fluorinated Anthracyclines. The Dioxirane Shunt. Synthetic Communications, 2003, 33, 3009-3016.	2.1	26
72	Chemo- and regioselective oxidation of adamantyl derivatives by dioxiranes. Tetrahedron Letters, 2002, 43, 4649-4652.	1.4	13

#	Article	IF	CITATIONS
73	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 4.1Efficient Oxidation of Binor S Using Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 2001, 66, 9063-9066.	3.2	24
74	On the hydroxylation of bicyclo[2.1.0]pentane using dioxiranes. Tetrahedron Letters, 2001, 42, 7087-7090.	1.4	28
75	Chemo- and diastereoselectivities in the oxidation of cyclopentenols with dimethyldioxirane and methyl(trifluoromethyl)dioxirane. Tetrahedron Letters, 1999, 40, 8023-8027.	1.4	19
76	High-yield synthesis of nitriles by oxidation of aldehyde N,N-dimethylhydrazones with dimethyldioxirane. Tetrahedron Letters, 1998, 39, 2009-2012.	1.4	25
77	Facile conversion of sulfilimines into sulfoximines using dioxiranes. Tetrahedron Letters, 1997, 38, 5559-5562.	1.4	22
78	Epoxidation and Oxygen Insertion Into Alkane Ch Bonds by Dioxirane Do Not Involve Detectable Radical Pathways. Chemistry - A European Journal, 1997, 3, 105-109.	3.3	79
79	Selective oxidation of O-isopropylidene derivatives of diols to 2-hydroxy ketones employing dioxiranes. Tetrahedron Letters, 1996, 37, 115-118.	1.4	29
80	Oxidation of Coordinated Alkynes by Dimethyldioxirane. Conversion to .alphaKeto Carbene Complexes. Organometallics, 1995, 14, 1545-1547.	2.3	20
81	Enantioselective Epoxidation of Unfunctionalized Alkenes using Dioxiranes Generated In Situ. Tetrahedron Letters, 1995, 36, 5831-5834.	1.4	96
82	Enantioselective epoxidation of unfunctionalized alkenes using dioxiranes generated in situ. Tetrahedron Letters, 1995, 36, 5831-5834.	1.4	17
83	Selective oxidation of tertiary-secondary vic-diols to α-hydroxy ketones by dioxiranes. Tetrahedron Letters, 1993, 34, 4559-4562.	1.4	41
84	Selective oxidation of optically active sec,sec-1,2-diols by dioxiranes. A practical method for the synthesis of homochiral .alphahydroxy ketones in high optical purity. Journal of Organic Chemistry, 1993, 58, 3600-3601.	3.2	60
85	Oxidation of acetals, an orthoester, and ethers by dioxiranes through α-CH insertion. Tetrahedron Letters, 1992, 33, 4225-4228.	1.4	62
86	Oxidation of catechol and of 2,6-di-tert-butylphenol by dioxiranes. Tetrahedron Letters, 1991, 32, 5445-5448.	1.4	39