Diego Cesar Mateo Peña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals and applications of photo-thermal catalysis. Chemical Society Reviews, 2021, 50, 2173-2210.	38.1	339
2	Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 2019, 3, 1949-1962.	24.0	102
3	Photoassisted methanation using Cu ₂ O nanoparticles supported on graphene as a photocatalyst. Energy and Environmental Science, 2017, 10, 2392-2400.	30.8	83
4	Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 2017, 201, 582-590.	20.2	63
5	A Heterogeneous Carbon Nitride–Nickel Photocatalyst for Efficient Lowâ€Temperature CO ₂ Methanation. Advanced Energy Materials, 2019, 9, 1902738.	19.5	58
6	An Efficient Metal–Organic Frameworkâ€Đerived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 26476-26482.	13.8	45
7	Electrothermal Design Procedure to Observe RF Circuit Power and Linearity Characteristics With a Homodyne Differential Temperature Sensor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 458-469.	5.4	30
8	A Versatile CMOS Transistor Array IC for the Statistical Characterization of Time-Zero Variability, RTN, BTI, and HCI. IEEE Journal of Solid-State Circuits, 2019, 54, 476-488.	5.4	29
9	Strategies for built-in characterization testing and performance monitoring of analog RF circuits with temperature measurements. Measurement Science and Technology, 2010, 21, 075104.	2.6	26
10	Synergism of Au and Ru Nanoparticles in Lowâ€Temperature Photoassisted CO ₂ Methanation. Chemistry - A European Journal, 2018, 24, 18436-18443.	3.3	23
11	Efficiency determination of RF linear power amplifiers by steady-state temperature monitoring using built-in sensors. Sensors and Actuators A: Physical, 2013, 192, 49-57.	4.1	19
12	The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors. Photochemical and Photobiological Sciences, 2018, 17, 829-834.	2.9	19
13	Differential Temperature Sensors Fully Compatible With a 0.35-\$mu\$m CMOS Process. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 618-626.	1.3	17
14	Survey of Robustness Enhancement Techniques for Wireless Systems-on-a-Chip and Study of Temperature as Observable for Process Variations. Journal of Electronic Testing: Theory and Applications (JETTA), 2011, 27, 225-240.	1.2	11
15	DC temperature measurements for power gain monitoring in RF power amplifiers. , 2012, , .		11
16	Electro-thermal coupling analysis methodology for RF circuits. Microelectronics Journal, 2012, 43, 633-641.	2.0	11
17	Aging in CMOS RF Linear Power Amplifiers: An Experimental Study. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1453-1463.	4.6	11
18	A Low-Power Template Generator for Coherent Impulse-Radio Ultra Wide-Band Receivers. , 2006, , .		7

A Low-Power Template Generator for Coherent Impulse-Radio Ultra Wide-Band Receivers. , 2006, , . 18

Diego Cesar Mateo Peña

#	Article	IF	CITATIONS
19	A 16-kV HBM RF ESD Protection Codesign for a 1-mW CMOS Direct Conversion Receiver Operating in the 2.4-GHz ISM Band. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2318-2330.	4.6	7
20	Non-invasive monitoring of CMOS power amplifiers operating at RF and mmW Frequencies using an on-chip thermal sensor. , 2011, , .		7
21	Differential Temperature Sensors: Review of Applications in the Test and Characterization of Circuits, Usage and Design Methodology. Sensors, 2019, 19, 4815.	3.8	7
22	On the Use of Static Temperature Measurements as Process Variation Observable. Journal of Electronic Testing: Theory and Applications (JETTA), 2012, 28, 685-695.	1.2	6
23	Aging in CMOS RF Linear Power Amplifiers: Experimental Comparison and Modeling. , 2019, , .		6
24	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie, 2021, 133, 26680-26686.	2.0	4
25	A High Dynamic-Range RF Programmable-Gain Front End for G.hn RF-Coax in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3243-3253.	4.6	4
26	An investigation on the relation between digital circuitry characteristics and power supply noise spectrum in mixed-signal CMOS integrated circuits. Microelectronics Journal, 2005, 36, 77-84.	2.0	3
27	Low Noise Amplifiers for Low-Power Impulse-Radio Ultra Wide-Band Receivers. , 2006, , .		3
28	Effect of high frequency substrate noise on LC-VCOs. , 2010, , .		3
29	A 75 pJ/bit all-digital quadrature coherent IR-UWB transceiver in 0.18 Å μ m CMOS. , 2010, , .		3
30	Electro-thermal characterization of a differential temperature sensor in a 65nm CMOS IC: Applications to gain monitoring in RF amplifiers. Microelectronics Journal, 2014, 45, 484-490.	2.0	3
31	Experimental Monitoring of Aging in CMOS RF Linear Power Amplifiers: Correlation Between Device and Circuit Degradation. , 2020, , .		3
32	Evaluation of package and technology effects on substrate-crosstalk isolation in CMOS RFIC. , 2003, , .		2
33	Behavioural Modelling of DLLs for Fast Simulation and Optimisation of Jitter and Power Consumption. , 2010, , .		2
34	Design of a 2.5â€GHZ QVCO robust against high frequency substrate noise. Microwave and Optical Technology Letters, 2011, 53, 1632-1637.	1.4	2
35	On line monitoring of RF power amplifiers with embedded temperature sensors. , 2012, , .		2
36	BPF-Based Thermal Sensor Circuit for On-Chip Testing of RF Circuits. Sensors, 2021, 21, 805.	3.8	2

#	ARTICLE	IF	CITATIONS
37	Thermal coupling in ICs: Applications to the test and characterization of analogue and RF circuits. , 2010, , .		1
38	A small-area inductorless configurable wideband LNA with high dynamic range. Microelectronics Journal, 2012, 43, 198-204.	2.0	1
39	Analysis of Body Bias and RTN-Induced Frequency Shift of Low Voltage Ring Oscillators in FDSOI Technology. , 2018, , .		1
40	Advanced failure detection techniques in deep submicron CMOS integrated circuits. Microelectronics Reliability, 1999, 39, 909-918.	1.7	0
41	Inductor shielding strategies to protect mmW LC-VCOs from high frequency substrate noise. Microelectronics Journal, 2013, 44, 405-413.	2.0	0