
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 2004, 42, .	23.0	669
2	Generic model of subduction erosion. Geology, 2004, 32, 913.	4.4	312
3	Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews, 2009, 97, 80-104.	9.1	179
4	Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: Combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics, 2001, 20, 649-668.	2.8	126
5	Geological record of fluid flow and seismogenesis along an erosive subducting plate boundary. Nature, 2008, 451, 699-703.	27.8	125
6	Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones. Journal of Geophysical Research, 2003, 108, .	3.3	115
7	On the nature of scaly fabric and scaly clay. Journal of Structural Geology, 2003, 25, 673-688.	2.3	100
8	Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology, 2013, 41, 995-998.	4.4	76
9	Long-term subduction-erosion along the Guatemalan margin of the Middle America Trench. Geology, 2004, 32, 617.	4.4	74
10	Intra-arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry. Earth and Planetary Science Letters, 2008, 272, 365-371.	4.4	74
11	Active thrusting in the inner forearc of an erosive convergent margin, Pacific coast, Costa Rica. Tectonics, 2004, 23, n/a-n/a.	2.8	67
12	Structural style of the offscraped Ligurian oceanic sequences of the Northern Apennines: new hypothesis concerning the development of mélange block-in-matrix fabric. Journal of Structural Geology, 2003, 25, 371-388.	2.3	66
13	Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica Et Cosmochimica Acta, 2015, 166, 29-52.	3.9	65
14	Subduction erosion and arc volcanism. Nature Reviews Earth & Environment, 2020, 1, 574-589.	29.7	64
15	Understanding Himalayan erosion and the significance of the Nicobar Fan. Earth and Planetary Science Letters, 2017, 475, 134-142.	4.4	58
16	Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science, 2017, 356, 841-844.	12.6	57
17	Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	54
18	Structure, inferred mechanical properties, and implications for fluid transport in the décollement zone, Costa Rica convergent margin. Geology, 2001, 29, 907.	4.4	49

#	Article	IF	CITATIONS
19	Marine Transform Faults and Fracture Zones: A Joint Perspective Integrating Seismicity, Fluid Flow and Life. Frontiers in Earth Science, 2019, 7, .	1.8	46
20	Mechanisms of subduction accretion as implied from the broken formations in the Apennines, Italy. Geology, 2002, 30, 835.	4.4	40
21	From seamount accretion to tectonic erosion: Formation of Osa Mélange and the effects of Cocos Ridge subduction in southern Costa Rica. Tectonics, 2006, 25, n/a-n/a.	2.8	39
22	Arc-continent collisions, sediment recycling and the maintenance of the continental crust. Geological Society Special Publication, 2009, 318, 75-103.	1.3	38
23	Internal structure and tectonic evolution of an underthrust tectonic mélange: the Sestola-Vidiciatico tectonic unit of the Northern Apennines, Italy. Geodinamica Acta, 2007, 20, 37-51.	2.2	36
24	Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Research, 2016, 40, 184-198.	6.0	29
25	Origin and dynamics of depositionary subduction margins. Geochemistry, Geophysics, Geosystems, 2016, 17, 1966-1974.	2.5	29
26	Deformation structures and implications for fluid flow at the Costa Rica convergent margin, ODP Sites 1040 and 1043, Leg 170. Journal of Structural Geology, 2000, 22, 1087-1103.	2.3	28
27	Fluid history related to the early Eoceneâ€middle Miocene convergent system of the Northern Apennines (Italy): Constraints from structural and isotopic studies. Journal of Geophysical Research, 2010, 115, .	3.3	27
28	Seamount chain–subduction zone interactions: Implications for accretionary and erosive subduction zone behavior. Geology, 2018, 46, 367-370.	4.4	26
29	Seismostratigraphy of the CearÃ; Plateau: Clues to Decipher the Cenozoic Evolution of Brazilian Equatorial Margin. Frontiers in Earth Science, 2016, 4, .	1.8	25
30	Past seismic slip-to-the-trench recorded in Central America megathrust. Nature Geoscience, 2017, 10, 935-940.	12.9	23
31	Scaly fabric and slip within fault zones. , 2019, 15, 342-356.		22
32	Late <scp>C</scp> enozoic tephrostratigraphy offshore the southern <scp>C</scp> entral <scp>A</scp> merican <scp>V</scp> olcanic <scp>A</scp> rc: 2. Implications for magma production rates and subduction erosion. Geochemistry, Geophysics, Geosystems, 2016, 17, 4585-4604.	2.5	21
33	Myths and recent progress regarding the Argille Scagliose, Northern Apennines, Italy. International Geology Review, 2010, 52, 1106-1137.	2.1	18
34	Insights into shallowâ€level processes of mountain building from the Northern Apennines, Italy. Journal of the Geological Society, 2000, 157, 105-120.	2.1	15
35	The Ligurian Units of Western Tuscany (Northern Apennines): insight on the influence of pre-existing weakness zones during ocean closure. Geodinamica Acta, 2007, 20, 71-97.	2.2	15
36	Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts. Geochemistry, Geophysics, Geosystems, 2016, 17, 65-77.	2.5	14

#	Article	IF	CITATIONS
37	Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event. Earth and Planetary Science Letters, 2015, 409, 168-174.	4.4	13
38	The Romanche fracture zone influences the segmentation of the equatorial margin of Brazil. Journal of South American Earth Sciences, 2020, 103, 102738.	1.4	13
39	Structural characterization of the Costa Rica décollement: Evidence for seismically-induced fluid pulsing. Earth and Planetary Science Letters, 2007, 262, 413-428.	4.4	12
40	Monitoring paleo-fluid pressure through vein microstructures. Journal of Geodynamics, 2001, 32, 567-581.	1.6	11
41	Characterisation of submarine depression trails driven by upslope migrating cyclic steps: Insights from the CearÃ _i Basin (Brazil). Marine and Petroleum Geology, 2020, 115, 104291.	3.3	10
42	Interplay of Subduction Tectonics, Sedimentation, and Carbon Cycling. Geochemistry, Geophysics, Geosystems, 2019, 20, 4939-4955.	2.5	7
43	Possible crystalline gastroliths of large marine Vertebrata from Oligocene pelitic sediments of the Northern Apennines, Italy. Geology, 1998, 26, 775.	4.4	6
44	Deformation, fluid flow, and mass transfer in the forearc of convergent margins: A two-day field trip in an ancient and exhumed erosive convergent margin in the Northern Apennines. , 2012, , 1-33.		6
45	Subduction Zones. Developments in Marine Geology, 2014, , 599-640.	0.4	6
46	Overview of the Tectonics and Geodynamics of Costa Rica. Active Volcanoes of the World, 2019, , 1-12.	1.4	5
47	Insights from the Ocean Drilling Program on shear and fluid-flow at the mega-faults between actively converging plates. Geological Society Special Publication, 2004, 224, 127-140.	1.3	4
48	Deformation pattern in the underthrust carbonate-rich sequence of the Sibillini Thrust (central) Tj ETQq0 0 0 rgBT 53-69.	/Overlock 2.2	10 Tf 50 30 4
49	Reply to comment by David M. Buchs and Peter O. Baumgartner on "From seamount accretion to tectonic erosion: Formation of Osa Mélange and the effects of the Cocos Ridge subduction in southern Costa Rica― Tectonics, 2007, 26, n/a-n/a.	2.8	4
50	Deformation and material transfer in a fossil subduction channel: Evidence from the Island of Elba (Italy). Tectonics, 0, , .	2.8	4
51	Segmented, curved faults: the example of the Balduini Thrust Zone, Northern Apennines, Italy. Journal of Structural Geology, 1999, 21, 1655-1668.	2.3	3
52	Chapter 3 Aseismic-Seismic Transition and Fluid Regime along Subduction Plate Boundaries and a Fossil Example from the Northern Apennines of Italy. International Geophysics, 2009, , 37-68.	0.6	3
53	Structural anisotropy: Using image analysis to quantify block-in-matrix fabrics. Journal of Structural Geology, 2020, 131, 103939.	2.3	3
54	The life cycle of subcontinental peridotites: From rifted continental margins to mountains via subduction processes. Geology, 2020, 48, 1154-1158.	4.4	3

#	Article	IF	CITATIONS
55	Sedimentary provenance of the Plio-Pleistocene Nicobar Fan: Complex sourcing revealed through Raman spectroscopy heavy mineral analysis. Marine and Petroleum Geology, 2021, 125, 104874.	3.3	3
56	Transmogrification of ocean into continent: implications for continental evolution. Proceedings of the United States of America, 2022, 119, e2122694119.	7.1	3
57	Possible crystalline gastroliths of large marine Vertebrata from Oligocene pelitic sediments of the Northern Apennines, Italy: Comment and Reply. Geology, 1999, 27, 575.	4.4	2
58	Reply to Comment on: "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska eventâ€ , by P. Vannucchi et al. [Earth Planet. Sci. Lett. 409 (2015) 168–174]. Earth and Planetary Science Letters, 2015, 419, 224-227.	4.4	1
59	Focusing on proto-seismogenic zone of erosional convergent margin. Eos, 2004, 85, 70.	0.1	0
60	Reply to comment on "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event―by Vannucchi et al. (Earth Planet. Sci. Lett. 409 (2015) 168–174). Earth and Planetary Science Letters, 2015, 415, 215.	4.4	0
61	A strength inversion origin for non-volcanic tremor. Nature Communications, 2022, 13, 2311.	12.8	0